Interaction of water with oligo(ethylene glycol) terminated monolayers: wetting hydration

Biorepulsivity of oligo(ethylene glycol) (OEG) substituted self-assembled monolayers (SAMs), serving as model systems for analogous polymeric surfaces, is generally ascribed to the hydration effect. In this context, we applied temperature-programmed desorption to study interaction of water (D 2 O) w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2020-04, Vol.22 (15), p.888-895
Hauptverfasser: Sayin, Mustafa, Nefedov, Alexei, Zharnikov, Michael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biorepulsivity of oligo(ethylene glycol) (OEG) substituted self-assembled monolayers (SAMs), serving as model systems for analogous polymeric surfaces, is generally ascribed to the hydration effect. In this context, we applied temperature-programmed desorption to study interaction of water (D 2 O) with a series of OH-terminated, OEG-substituted alkanethiolate SAMs with variable length of the OEG strand, defining their biorepulsion behavior. Along with the ice overlayer (wetting phase), growing also on the surface of the analogous non-substituted films, a hydration phase, corresponding to the adsorption of D 2 O into the OEG matrix, was observed, with a higher desorption energy (12.4 kcal mol −1 vs. 10.4 kcal mol −1 ) and a weight correlating with the length of the OEG strand and, consequently, with biorepulsivity. The formation of hydration phase was found to occur over an activation barrier, presumably by temperature-promoted diffusion from the wetting phase, with this process being additionally enforced by a pre-desorption annealing. Exposure of biorepulsive, oligo(ethylene glycol) (OEG) substituted self-assembled monolayers to water results in its adsorption both onto the surface and, with a higher binding energy, into the OEG matrix.
ISSN:1463-9076
1463-9084
DOI:10.1039/d0cp00906g