High-resolution resonance-enhanced multiphoton photoelectron circular dichroism

Photoelectron circular dichroism (PECD) is a highly sensitive enantiospecific spectroscopy for studying chiral molecules in the gas phase using either single-photon ionization or multiphoton ionization. In the short pulse limit investigated with femtosecond lasers, resonance-enhanced multiphoton ion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2020-04, Vol.22 (14), p.744-7411
Hauptverfasser: Kastner, Alexander, Koumarianou, Greta, Glodic, Pavle, Samartzis, Peter C, Ladda, Nicolas, Ranecky, Simon T, Ring, Tom, Vasudevan, Sudheendran, Witte, Constantin, Braun, Hendrike, Lee, Han-Gyeol, Senftleben, Arne, Berger, Robert, Park, G. Barratt, Schäfer, Tim, Baumert, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photoelectron circular dichroism (PECD) is a highly sensitive enantiospecific spectroscopy for studying chiral molecules in the gas phase using either single-photon ionization or multiphoton ionization. In the short pulse limit investigated with femtosecond lasers, resonance-enhanced multiphoton ionization (REMPI) is rather instantaneous and typically occurs simultaneously via more than one vibrational or electronic intermediate state due to limited frequency resolution. In contrast, vibrational resolution in the REMPI spectrum can be achieved using nanosecond lasers. In this work, we follow the high-resolution approach using a tunable narrow-band nanosecond laser to measure REMPI-PECD through distinct vibrational levels in the intermediate 3s and 3p Rydberg states of fenchone. We observe the PECD to be essentially independent of the vibrational level. This behaviour of the chiral sensitivity may pave the way for enantiomer specific molecular identification in multi-component mixtures: one can specifically excite a sharp, vibrationally resolved transition of a distinct molecule to distinguish different chiral species in mixtures. By combining molecular beam techniques with high resolution resonance enhanced multi photon ionization followed by angular resolved photoelectron detection we pave the way for enantiomer specific molecular identification in multi-component mixtures.
ISSN:1463-9076
1463-9084
DOI:10.1039/d0cp00470g