Theoretical study of the reaction mechanism and kinetics of the phenyl + propargyl association
Potential energy surface for the phenyl + propargyl radical recombination reaction has been studied at the CCSD(T)-F12/cc-pVTZ-f12//B3LYP/6-311G** level of theory for the closed-shell singlet species and at the triplet-singlet gap CASPT2/cc-pVTZ-CCSD(T)-F12/cc-pVTZ-f12//CASSCF/cc-pVTZ level of theor...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2020-04, Vol.22 (13), p.6868-688 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Potential energy surface for the phenyl + propargyl radical recombination reaction has been studied at the CCSD(T)-F12/cc-pVTZ-f12//B3LYP/6-311G** level of theory for the closed-shell singlet species and at the triplet-singlet gap CASPT2/cc-pVTZ-CCSD(T)-F12/cc-pVTZ-f12//CASSCF/cc-pVTZ level of theory for the diradical species. High-pressure limit rate constants for the barrierless channels were evaluated with variable reaction coordinate transition state theory (VRC-TST). Rice-Ramsperger-Kassel-Marcus Master Equation (RRKM-ME) calculations have been performed to assess temperature- and pressure-dependent phenomenological rate constants and product branching ratios. The entrance channels of the radical association reaction produce 3-phenyl-1-propyne and phenylallene which can further dissociate/isomerize into a variety of unimolecular and bimolecular products. Theoretical evidence is presented that, at combustion relevant conditions, the phenyl + propargyl recombination provides a feasible mechanism for the addition of a second five-member ring to the first six-member aromatic ring producing the prototype two-ring species indene and indenyl. Rate expressions for all important reaction channels in a broad range of temperatures and pressures have been generated for kinetic modeling.
Potential energy surface for the phenyl + propargyl radical recombination reaction has been studied using high-level
ab initio
calculations and temperature- and pressure-dependent rate constants and product yields have been computed employing RRKM-ME. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/d0cp00306a |