Interfacial strain driven magnetoelectric coupling in (111)-oriented self-assembled BiFeO-CoFeO thin films

Magnetoelectric materials have been considered as promising candidates for data storage and sensors based on spintronic technology. Multiferroic BiFeO 3 -CoFe 2 O 4 (BFO-CFO) epitaxial thin films deposited on a (111)-oriented SrTiO 3 substrate exhibit ferromagnetism, piezoelectricity and strong magn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2020-03, Vol.8 (1), p.3527-3535
Hauptverfasser: Wang, Lei, Bian, Jihong, Lu, Lu, Liang, Zhongshuai, Zhang, Dawei, Yang, Bian, Li, Linglong, Lu, Guanghao, Yang, Yaodong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3535
container_issue 1
container_start_page 3527
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 8
creator Wang, Lei
Bian, Jihong
Lu, Lu
Liang, Zhongshuai
Zhang, Dawei
Yang, Bian
Li, Linglong
Lu, Guanghao
Yang, Yaodong
description Magnetoelectric materials have been considered as promising candidates for data storage and sensors based on spintronic technology. Multiferroic BiFeO 3 -CoFe 2 O 4 (BFO-CFO) epitaxial thin films deposited on a (111)-oriented SrTiO 3 substrate exhibit ferromagnetism, piezoelectricity and strong magnetoelectric properties simultaneously. Interfacial strain between two phases plays a key role in such unique characters. Thus, strain engineering is a good method to enhance the magnetoelectric coupling effect. Here, to clearly understand the role of strain for further strain engineering, the interfacial strain between BFO and CFO and its evolution under electric/magnetic fields are investigated. This work semiquantitatively establishes a detailed relationship between the magnetoelectric coupling effect and interfacial strains - the piezoelectric amplitude drops by 44.7% and meanwhile the out-of-plane tensile strain rises by 11.0% under magnetic fields. This finding is helpful in optimizing multiferroic composite structures and achieving wider applications in future. The piezoelectric amplitude drops by 44.7% and meanwhile the out-of-plane tensile strain rises by 11.0% under reverse magnetic fields in (1-3)-type BFO-CFO thin films.
doi_str_mv 10.1039/c9tc06739f
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c9tc06739f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c9tc06739f</sourcerecordid><originalsourceid>FETCH-rsc_primary_c9tc06739f3</originalsourceid><addsrcrecordid>eNp9jzFvwjAQha2KSkWQpXsldyuDwSZNIGtRUTuxsEfGOdOLHCfyGST-Pa5UlY0b3r2n--6kY-xZybmSebUwVTSyXOWVfWDjpSykWBX5--jfL8snlhG1MtValeuyGrP220cIVhvUjlMMGj1vAp7B804fPcQeHJgY0HDTnwaH_sgT8qaUmok-IKT1hhM4KzQRdAeX4gduYSc2fVIefxJu0XU0ZY9WO4Lsr0_Yy_Zzv_kSgUw9BOx0uNS3H_IJe703r4fml7l_4wpb3FXc</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interfacial strain driven magnetoelectric coupling in (111)-oriented self-assembled BiFeO-CoFeO thin films</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Lei ; Bian, Jihong ; Lu, Lu ; Liang, Zhongshuai ; Zhang, Dawei ; Yang, Bian ; Li, Linglong ; Lu, Guanghao ; Yang, Yaodong</creator><creatorcontrib>Wang, Lei ; Bian, Jihong ; Lu, Lu ; Liang, Zhongshuai ; Zhang, Dawei ; Yang, Bian ; Li, Linglong ; Lu, Guanghao ; Yang, Yaodong</creatorcontrib><description>Magnetoelectric materials have been considered as promising candidates for data storage and sensors based on spintronic technology. Multiferroic BiFeO 3 -CoFe 2 O 4 (BFO-CFO) epitaxial thin films deposited on a (111)-oriented SrTiO 3 substrate exhibit ferromagnetism, piezoelectricity and strong magnetoelectric properties simultaneously. Interfacial strain between two phases plays a key role in such unique characters. Thus, strain engineering is a good method to enhance the magnetoelectric coupling effect. Here, to clearly understand the role of strain for further strain engineering, the interfacial strain between BFO and CFO and its evolution under electric/magnetic fields are investigated. This work semiquantitatively establishes a detailed relationship between the magnetoelectric coupling effect and interfacial strains - the piezoelectric amplitude drops by 44.7% and meanwhile the out-of-plane tensile strain rises by 11.0% under magnetic fields. This finding is helpful in optimizing multiferroic composite structures and achieving wider applications in future. The piezoelectric amplitude drops by 44.7% and meanwhile the out-of-plane tensile strain rises by 11.0% under reverse magnetic fields in (1-3)-type BFO-CFO thin films.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/c9tc06739f</identifier><language>eng</language><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-03, Vol.8 (1), p.3527-3535</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Bian, Jihong</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Liang, Zhongshuai</creatorcontrib><creatorcontrib>Zhang, Dawei</creatorcontrib><creatorcontrib>Yang, Bian</creatorcontrib><creatorcontrib>Li, Linglong</creatorcontrib><creatorcontrib>Lu, Guanghao</creatorcontrib><creatorcontrib>Yang, Yaodong</creatorcontrib><title>Interfacial strain driven magnetoelectric coupling in (111)-oriented self-assembled BiFeO-CoFeO thin films</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Magnetoelectric materials have been considered as promising candidates for data storage and sensors based on spintronic technology. Multiferroic BiFeO 3 -CoFe 2 O 4 (BFO-CFO) epitaxial thin films deposited on a (111)-oriented SrTiO 3 substrate exhibit ferromagnetism, piezoelectricity and strong magnetoelectric properties simultaneously. Interfacial strain between two phases plays a key role in such unique characters. Thus, strain engineering is a good method to enhance the magnetoelectric coupling effect. Here, to clearly understand the role of strain for further strain engineering, the interfacial strain between BFO and CFO and its evolution under electric/magnetic fields are investigated. This work semiquantitatively establishes a detailed relationship between the magnetoelectric coupling effect and interfacial strains - the piezoelectric amplitude drops by 44.7% and meanwhile the out-of-plane tensile strain rises by 11.0% under magnetic fields. This finding is helpful in optimizing multiferroic composite structures and achieving wider applications in future. The piezoelectric amplitude drops by 44.7% and meanwhile the out-of-plane tensile strain rises by 11.0% under reverse magnetic fields in (1-3)-type BFO-CFO thin films.</description><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNp9jzFvwjAQha2KSkWQpXsldyuDwSZNIGtRUTuxsEfGOdOLHCfyGST-Pa5UlY0b3r2n--6kY-xZybmSebUwVTSyXOWVfWDjpSykWBX5--jfL8snlhG1MtValeuyGrP220cIVhvUjlMMGj1vAp7B804fPcQeHJgY0HDTnwaH_sgT8qaUmok-IKT1hhM4KzQRdAeX4gduYSc2fVIefxJu0XU0ZY9WO4Lsr0_Yy_Zzv_kSgUw9BOx0uNS3H_IJe703r4fml7l_4wpb3FXc</recordid><startdate>20200312</startdate><enddate>20200312</enddate><creator>Wang, Lei</creator><creator>Bian, Jihong</creator><creator>Lu, Lu</creator><creator>Liang, Zhongshuai</creator><creator>Zhang, Dawei</creator><creator>Yang, Bian</creator><creator>Li, Linglong</creator><creator>Lu, Guanghao</creator><creator>Yang, Yaodong</creator><scope/></search><sort><creationdate>20200312</creationdate><title>Interfacial strain driven magnetoelectric coupling in (111)-oriented self-assembled BiFeO-CoFeO thin films</title><author>Wang, Lei ; Bian, Jihong ; Lu, Lu ; Liang, Zhongshuai ; Zhang, Dawei ; Yang, Bian ; Li, Linglong ; Lu, Guanghao ; Yang, Yaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c9tc06739f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Bian, Jihong</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Liang, Zhongshuai</creatorcontrib><creatorcontrib>Zhang, Dawei</creatorcontrib><creatorcontrib>Yang, Bian</creatorcontrib><creatorcontrib>Li, Linglong</creatorcontrib><creatorcontrib>Lu, Guanghao</creatorcontrib><creatorcontrib>Yang, Yaodong</creatorcontrib><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lei</au><au>Bian, Jihong</au><au>Lu, Lu</au><au>Liang, Zhongshuai</au><au>Zhang, Dawei</au><au>Yang, Bian</au><au>Li, Linglong</au><au>Lu, Guanghao</au><au>Yang, Yaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial strain driven magnetoelectric coupling in (111)-oriented self-assembled BiFeO-CoFeO thin films</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2020-03-12</date><risdate>2020</risdate><volume>8</volume><issue>1</issue><spage>3527</spage><epage>3535</epage><pages>3527-3535</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Magnetoelectric materials have been considered as promising candidates for data storage and sensors based on spintronic technology. Multiferroic BiFeO 3 -CoFe 2 O 4 (BFO-CFO) epitaxial thin films deposited on a (111)-oriented SrTiO 3 substrate exhibit ferromagnetism, piezoelectricity and strong magnetoelectric properties simultaneously. Interfacial strain between two phases plays a key role in such unique characters. Thus, strain engineering is a good method to enhance the magnetoelectric coupling effect. Here, to clearly understand the role of strain for further strain engineering, the interfacial strain between BFO and CFO and its evolution under electric/magnetic fields are investigated. This work semiquantitatively establishes a detailed relationship between the magnetoelectric coupling effect and interfacial strains - the piezoelectric amplitude drops by 44.7% and meanwhile the out-of-plane tensile strain rises by 11.0% under magnetic fields. This finding is helpful in optimizing multiferroic composite structures and achieving wider applications in future. The piezoelectric amplitude drops by 44.7% and meanwhile the out-of-plane tensile strain rises by 11.0% under reverse magnetic fields in (1-3)-type BFO-CFO thin films.</abstract><doi>10.1039/c9tc06739f</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-03, Vol.8 (1), p.3527-3535
issn 2050-7526
2050-7534
language eng
recordid cdi_rsc_primary_c9tc06739f
source Royal Society Of Chemistry Journals 2008-
title Interfacial strain driven magnetoelectric coupling in (111)-oriented self-assembled BiFeO-CoFeO thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T04%3A46%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20strain%20driven%20magnetoelectric%20coupling%20in%20(111)-oriented%20self-assembled%20BiFeO-CoFeO%20thin%20films&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Wang,%20Lei&rft.date=2020-03-12&rft.volume=8&rft.issue=1&rft.spage=3527&rft.epage=3535&rft.pages=3527-3535&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/c9tc06739f&rft_dat=%3Crsc%3Ec9tc06739f%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true