Novel β-1,3--glucan porous microcapsule enveloped folate-functionalized liposomes as a Trojan horse for facilitated oral tumor-targeted co-delivery of chemotherapeutic drugs and quantum dots

In this study, a new type of β-1,3- d -glucan porous microcapsule (GPM)-enveloped and folate conjugated chitosan-functional liposome (FCL), FCL@GPM, was developed for the potential oral co-delivery of chemotherapeutic drugs and quantum dots (QDs) with facilitated drug absorption and antitumor effica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2020-03, Vol.8 (11), p.237-232
Hauptverfasser: Li, Xiaonan, Zhao, Ziming, Yang, Yihua, Liu, Zhaorong, Wang, Jinglei, Xu, Yalu, Zhang, Yanzhuo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, a new type of β-1,3- d -glucan porous microcapsule (GPM)-enveloped and folate conjugated chitosan-functional liposome (FCL), FCL@GPM, was developed for the potential oral co-delivery of chemotherapeutic drugs and quantum dots (QDs) with facilitated drug absorption and antitumor efficacy. In this dual-particulate system, multiple FCLs serve as the cores for effective loading, folate-mediated tumor-targeting, facilitated intracellular accumulation, and pH-responsive controlled release of chemotherapeutic agents, while a GPM acts as the shell for affording macrophage-mediated tumor selectivity. Gefitinib (GEF) was selected as a chemotherapeutic agent, while acid degradable ZnO QDs were selected due to their dual role as an anticancer agent for synergistic chemotherapy and as a fluorescent probe for potential cancer cellular imaging. The GEF and ZnO QD co-loaded FCL@GPMs (GEF/ZnO-FCL@GPMs) exhibited a prolonged release manner with limited release before uptake by intestinal cells. Furthermore, Peyer's patch uptake, macrophage uptake, cytotoxicity, and biodistribution of FCL@GPMs were tested. In addition, GEF and ZnO QD co-loaded FCLs (GEF/ZnO-FCLs) not only have a tumor acidity responsive release property, but also induce a superior cytotoxicity on cancer cells as compared to GEF. Moreover, a 1.75-fold increase in the bioavailability of GEF delivered from GEF/ZnO-FCL@GPMs as compared to its trademarked drug (Iressa®). As a result, GEF/ZnO-FCL@GPMs exerted a superior antitumor efficacy (1.47-fold) as compared to the trademarked drug in mice. Considered together, the developed FCL@GPMs, combining the unique physicochemical and biological benefits of FCLs and GPMs, possess great potential as an efficient delivery system for the co-delivery of chemotherapeutic agents and quantum dots. In this study, novel β-1,3- d -glucan porous microcapsule enveloped folate-functionalized liposomes were developed for the potential co-delivery of chemotherapeutic drugs and quantum dots with facilitated drug absorption and antitumor efficacy.
ISSN:2050-750X
2050-7518
DOI:10.1039/c9tb02674f