Sharp pH-responsive mannose prodrug polypeptide nanoparticles encapsulating a photosensitizer for enhanced near infrared imaging-guided photodynamic therapy
Mannose has been reported as a novel drug to kill cancer cells. The prodrug of mannose will promote its targeted delivery and enrichment at the tumor site and cancer cells. Here, a pH-sensitive polypeptide copolymer with a tertiary amine group has been prepared and a mannose molecule was conjugated...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2019-11, Vol.7 (43), p.677-6777 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mannose has been reported as a novel drug to kill cancer cells. The prodrug of mannose will promote its targeted delivery and enrichment at the tumor site and cancer cells. Here, a pH-sensitive polypeptide copolymer with a tertiary amine group has been prepared and a mannose molecule was conjugated to the polymer through the formation of a Schiff base. At the same time, an iodinated boron dipyrromethene (BDPI) photosensitizer with high singlet oxygen generation efficacy and near infrared (NIR) fluorescence was encapsulated by the nanoparticles, which makes it a potential pH-sensitive NIR imaging-guided chemotherapy/PDT agent.
In vitro
and
in vivo
studies reveal that in a tumor acidic environment, the protonation of the tertiary amine group destroyed the nanostructure of the nanoparticles, resulting in increased BDPI release. Meanwhile, the bond cleavage of the Schiff base led to the release of conjugated mannose and synergistic inhibition of tumor cell growth with the PDT effect was realized. The combination of these two kinds of tumor suppression effects and photodynamic therapy made this pH-sensitive polypeptide delivery system show great potential for further cancer therapy.
Mannose conjugated polypeptide nanoparticles as a pH-responsive prodrug for enhanced near infrared imaging-guided photodynamic therapy. |
---|---|
ISSN: | 2050-750X 2050-7518 |
DOI: | 10.1039/c9tb01527b |