Atomically dispersed metal dimer species with selective catalytic activity for nitrogen electrochemical reduction
The electrocatalytic nitrogen reduction reaction (NRR) is emerging as an attractive strategy for sustainable and distributed production of ammonia (NH 3 ) under ambient conditions. Because of the use of unsatisfactory electrocatalysts, however, it is still encountering issues of low yield rates and...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (39), p.22242-22247 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The electrocatalytic nitrogen reduction reaction (NRR) is emerging as an attractive strategy for sustainable and distributed production of ammonia (NH
3
) under ambient conditions. Because of the use of unsatisfactory electrocatalysts, however, it is still encountering issues of low yield rates and limited efficiency, resulting from the sluggish reaction kinetics, the competing hydrogen evolution reaction and additional reaction product formation. Herein, an atomically dispersed transition metal dimer species was employed to selectively accelerate the nitrogen reduction reaction kinetics for high reduction efficiency and simultaneously alleviate the additional reaction. In this system, atomic Fe and Mo metal dimer
in situ
anchored on defect-rich graphene layers can realize selective electroreduction of nitrogen to ammonia by numerous FeMoN
x
C active sites. It exhibits higher catalytic activity than its counterparts (Fe@NG and Mo@NG) owing to a combination of ligand, geometric and synergistic effects, with a yield rate of 14.95 μg h
−1
mg
−1
at −0.4 V and a faradaic efficiency of 41.7% at −0.2 V. The superior performance of this atomic transition metal dimer catalyst can outperform some precious metal-based catalysts due to its excellent selectivity and high catalytic activity. The specific structure of the N-coordinated FeMo dimer was further identified to be FeMoN
6
by density functional theory (DFT). The catalytic reaction pathway and mechanism were explored by (DFT) calculations and proposed based on the FeMoN
6
model. The existence of numerous FeMoN
6
active sites can not only weaken the N&z.tbd;N bond, but also efficiently catalyze nitrogen reduction through the alternating pathway.
An atomic Fe/Mo-metal dimer
in situ
anchored on defect-rich graphene layers realizes selective electroreduction of nitrogen to ammonia by numerous FeMoN
6
active sites. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/c9ta07845b |