The role of apolipoprotein- and vitronectin-enriched protein corona on lipid nanoparticles for targeted delivery and transfection of oligonucleotides in murine tumor models

The application of lipid-based nanoparticle (LNP) delivery systems remains a popular strategy for the systemic delivery of gene therapies to specific disease targets, including solid tumors. It is now well acknowledged that upon systemic administration, biomolecules from blood will adsorb onto nanop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2019-10, Vol.11 (4), p.1886-18824
Hauptverfasser: Chen, Dongyu, Parayath, Neha, Ganesh, Shanthi, Wang, Weimin, Amiji, Mansoor
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The application of lipid-based nanoparticle (LNP) delivery systems remains a popular strategy for the systemic delivery of gene therapies to specific disease targets, including solid tumors. It is now well acknowledged that upon systemic administration, biomolecules from blood will adsorb onto nanoparticles' surfaces, forming a "protein corona", affording nanoparticles a "biological identity" on top of their "synthetic identity". Detailed analysis of nanoparticle protein corona is gradually revealing the "missing link" between nanoparticle chemical properties and the biological identity. Nevertheless, the discovery of nanoparticle protein corona's impact on tumor delivery is limited. In this study, we demonstrate that protein corona can be manipulated by formulation composition and particle surface charge changes, and a single lipid switch could switch the nanoparticle protein corona profile. The protein corona composition differences had a profound impact on cell transfection, in vivo biodistribution as well as tumor-specific delivery efficiency. Nanoparticles with apolipoprotein-rich corona showed better delivery to hepatocellular carcinoma (HepG2) as compared to those with vitronectin-rich corona. In addition, we found that, the PEG conjugated lipid chain length and PEG amount in LNPs were key factors to consider in successful RNA interference therapy for solid tumors. We demonstrated that protein corona can be altered by lipid nanoparticle composition changes. Protein corona composition differences had a profound impact on cell transfection, in vivo biodistribution and tumor-specific delivery.
ISSN:2040-3364
2040-3372
DOI:10.1039/c9nr05788a