Pd nanoparticles stabilized with phosphine-functionalized porous ionic polymer for efficient catalytic hydrogenation of nitroarenes in water
Small palladium nanoparticles stabilized with phosphine-functionalized porous ionic polymer (Pd@P(QP-TVP)) were successfully prepared through a free-radical copolymerization, successive anion-exchange and chemical reduction method. Physicochemical characterization studies suggested that the prepared...
Gespeichert in:
Veröffentlicht in: | New journal of chemistry 2020-03, Vol.44 (9), p.3681-3689 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Small palladium nanoparticles stabilized with phosphine-functionalized porous ionic polymer (Pd@P(QP-TVP)) were successfully prepared through a free-radical copolymerization, successive anion-exchange and chemical reduction method. Physicochemical characterization studies suggested that the prepared catalyst featured large surface area, a hierarchically porous structure, amphiphilic surface wettability, and strong electron interaction between Pd nanoparticles and the polymer scaffold. We demonstrated the use of the solid catalyst for water-mediated reduction of nitrobenzene with H
2
as a hydrogen source. Notably, a low Pd dosage was sufficient for a high yield (99.7%) of aniline with a remarkable turnover frequency (TOF) of 5982 h
−1
. Furthermore, the Pd@P(QP-TVP) catalyst can be easily recovered and reused at least 5 times without significant loss of activity. Additionally, a number of functional nitroarenes can be efficiently transformed to arylamines in high yields under optimal conditions. Thus, this work provided a highly active, stable and heterogeneous Pd catalyst for the environmentally benign and cost-effective hydrogenation of nitroarenes.
Small palladium nanoparticles stabilized with phosphine-functionalized PIP displayed high catalytic activity for nitroarenes hydrogenation. Nano-size Pd particles, electron-donation effect of phosphine ligand, and surface wettability account for its excellent catalytic performance. |
---|---|
ISSN: | 1144-0546 1369-9261 |
DOI: | 10.1039/c9nj05734j |