Co-Doped FeS with a porous structure for efficient electrocatalytic overall water splitting
The development of earth-abundant and high-efficiency electrocatalysts for overall water splitting is highly fascinating and still presents a challenge caused by the low activity for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) at the same time. In this paper, a...
Gespeichert in:
Veröffentlicht in: | New journal of chemistry 2020-02, Vol.44 (5), p.1711-1718 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of earth-abundant and high-efficiency electrocatalysts for overall water splitting is highly fascinating and still presents a challenge caused by the low activity for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) at the same time. In this paper, active cobalt-doped pyrite nanospheres with a porous structure are fabricated for the first time as advanced catalysts for water splitting in an alkaline solution. With the incorporation of cobalt atoms, the electronic structure of pyrite is well-tuned, with high conductivity as well as more active sites being obtained, which finally results in a superior bifunctional water splitting performance. Only 1.60 V is required to reach the current density of 10 mA cm
−2
, which is smaller than that of other transition metal sulfides.
The development of earth-abundant and high-efficiency electrocatalysts for overall water splitting is highly fascinating and still presents a challenge caused by the low activity for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) at the same time. |
---|---|
ISSN: | 1144-0546 1369-9261 |
DOI: | 10.1039/c9nj05023j |