Dramatic magnetic phase designing in phosphorene

Phosphorene is a unique two-dimensional semiconductor that exhibits huge potential for nanoelectronic, optoelectronic and spintronic applications and their cross-hybrid electronics. In particular, creation of magnetic phases in phosphorene selectively can provide a multitude of opportunities for dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2019, Vol.21 (42), p.23713-23719
Hauptverfasser: Nair, A. K, Kumari, P, Kamalakar, M. Venkata, Ray, S. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23719
container_issue 42
container_start_page 23713
container_title Physical chemistry chemical physics : PCCP
container_volume 21
creator Nair, A. K
Kumari, P
Kamalakar, M. Venkata
Ray, S. J
description Phosphorene is a unique two-dimensional semiconductor that exhibits huge potential for nanoelectronic, optoelectronic and spintronic applications and their cross-hybrid electronics. In particular, creation of magnetic phases in phosphorene selectively can provide a multitude of opportunities for developments in 2D spintronic circuits. Doping phosphorene with transition metal atoms can induce sustainable magnetic ordering, making it a diluted magnetic system, however, the viability of high temperature magnetic phases and potential control remain unanswered. In this work, using first-principles calculations, we uncover the impact of doping phosphorene with various 3d block elements (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn) in increasing order of atomic number at various levels of doping. Such an extensive study helps us to find the doping conditions that lead to remarkable feasibility of ferromagnetism and antiferromagnetism up to a strikingly large temperature ∼1150 K, evaluated by mean field theory. The doping concentration and atom type can be used to systematically tune the phases from ferromagnetic and antiferromagnetic to non-magnetic ground states. Our work provides new guidelines for engineering multi-functional spintronic components using phosphorene as a base material for all-phosphorene spintronics. Phosphorene is a unique two-dimensional semiconductor that has huge potential for nanoelectronic and spintronic applications. In the presence of various 3d block elements, remarkable feasibility of ferromagnetism and antiferromagnetism up to a large temperature ∼1150 K was observed.
doi_str_mv 10.1039/c9cp04871e
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9cp04871e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2310270651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-685b2bf5e6d6c3ba39e0bbd0f526a28e8de1dd598daccf784e668a0a05f20b073</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK5evAsr3sTqJGnT5Lh01w9Y0IN6DWkyrV3ctiYt4n9v18p68zDMMO_HY-YRckrhmgJXN1bZFmKZUtwjExoLHimQ8f5uTsUhOQphDQA0oXxCYOHNxnSVnW1MWeN2aN9MwJnDUJV1VZezqh5WTRjKY43H5KAw7wFPfvuUvNwun7P7aPV495DNV5GNGesiIZOc5UWCwgnLc8MVQp47KBImDJMoHVLnEiWdsbZIZYxCSAMGkoJBDimfkqvRN3xi2-e69dXG-C_dmEovqte5bnyp-15zlQrJBvxixFvffPQYOr1uel8PF2rGKbAUxPDvlFyOlPVNCB6LnS0FvQ1QZyp7-glwOcBnI-yD3XF_AQ_6-X-6bl3BvwEyongw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310270651</pqid></control><display><type>article</type><title>Dramatic magnetic phase designing in phosphorene</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Nair, A. K ; Kumari, P ; Kamalakar, M. Venkata ; Ray, S. J</creator><creatorcontrib>Nair, A. K ; Kumari, P ; Kamalakar, M. Venkata ; Ray, S. J</creatorcontrib><description>Phosphorene is a unique two-dimensional semiconductor that exhibits huge potential for nanoelectronic, optoelectronic and spintronic applications and their cross-hybrid electronics. In particular, creation of magnetic phases in phosphorene selectively can provide a multitude of opportunities for developments in 2D spintronic circuits. Doping phosphorene with transition metal atoms can induce sustainable magnetic ordering, making it a diluted magnetic system, however, the viability of high temperature magnetic phases and potential control remain unanswered. In this work, using first-principles calculations, we uncover the impact of doping phosphorene with various 3d block elements (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn) in increasing order of atomic number at various levels of doping. Such an extensive study helps us to find the doping conditions that lead to remarkable feasibility of ferromagnetism and antiferromagnetism up to a strikingly large temperature ∼1150 K, evaluated by mean field theory. The doping concentration and atom type can be used to systematically tune the phases from ferromagnetic and antiferromagnetic to non-magnetic ground states. Our work provides new guidelines for engineering multi-functional spintronic components using phosphorene as a base material for all-phosphorene spintronics. Phosphorene is a unique two-dimensional semiconductor that has huge potential for nanoelectronic and spintronic applications. In the presence of various 3d block elements, remarkable feasibility of ferromagnetism and antiferromagnetism up to a large temperature ∼1150 K was observed.</description><identifier>ISSN: 1463-9076</identifier><identifier>ISSN: 1463-9084</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp04871e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Antiferromagnetism ; Atomic properties ; Chromium ; Copper ; Doping ; Ferromagnetism ; First principles ; High temperature ; Manganese ; Mean field theory ; Nickel ; Optoelectronics ; Phases ; Phosphorene ; Spintronics ; Titanium ; Transition metals ; Viability</subject><ispartof>Physical chemistry chemical physics : PCCP, 2019, Vol.21 (42), p.23713-23719</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-685b2bf5e6d6c3ba39e0bbd0f526a28e8de1dd598daccf784e668a0a05f20b073</citedby><cites>FETCH-LOGICAL-c422t-685b2bf5e6d6c3ba39e0bbd0f526a28e8de1dd598daccf784e668a0a05f20b073</cites><orcidid>0000-0003-2385-9267 ; 0000-0002-4640-708X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,4026,27930,27931,27932</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-397682$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Nair, A. K</creatorcontrib><creatorcontrib>Kumari, P</creatorcontrib><creatorcontrib>Kamalakar, M. Venkata</creatorcontrib><creatorcontrib>Ray, S. J</creatorcontrib><title>Dramatic magnetic phase designing in phosphorene</title><title>Physical chemistry chemical physics : PCCP</title><description>Phosphorene is a unique two-dimensional semiconductor that exhibits huge potential for nanoelectronic, optoelectronic and spintronic applications and their cross-hybrid electronics. In particular, creation of magnetic phases in phosphorene selectively can provide a multitude of opportunities for developments in 2D spintronic circuits. Doping phosphorene with transition metal atoms can induce sustainable magnetic ordering, making it a diluted magnetic system, however, the viability of high temperature magnetic phases and potential control remain unanswered. In this work, using first-principles calculations, we uncover the impact of doping phosphorene with various 3d block elements (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn) in increasing order of atomic number at various levels of doping. Such an extensive study helps us to find the doping conditions that lead to remarkable feasibility of ferromagnetism and antiferromagnetism up to a strikingly large temperature ∼1150 K, evaluated by mean field theory. The doping concentration and atom type can be used to systematically tune the phases from ferromagnetic and antiferromagnetic to non-magnetic ground states. Our work provides new guidelines for engineering multi-functional spintronic components using phosphorene as a base material for all-phosphorene spintronics. Phosphorene is a unique two-dimensional semiconductor that has huge potential for nanoelectronic and spintronic applications. In the presence of various 3d block elements, remarkable feasibility of ferromagnetism and antiferromagnetism up to a large temperature ∼1150 K was observed.</description><subject>Antiferromagnetism</subject><subject>Atomic properties</subject><subject>Chromium</subject><subject>Copper</subject><subject>Doping</subject><subject>Ferromagnetism</subject><subject>First principles</subject><subject>High temperature</subject><subject>Manganese</subject><subject>Mean field theory</subject><subject>Nickel</subject><subject>Optoelectronics</subject><subject>Phases</subject><subject>Phosphorene</subject><subject>Spintronics</subject><subject>Titanium</subject><subject>Transition metals</subject><subject>Viability</subject><issn>1463-9076</issn><issn>1463-9084</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK5evAsr3sTqJGnT5Lh01w9Y0IN6DWkyrV3ctiYt4n9v18p68zDMMO_HY-YRckrhmgJXN1bZFmKZUtwjExoLHimQ8f5uTsUhOQphDQA0oXxCYOHNxnSVnW1MWeN2aN9MwJnDUJV1VZezqh5WTRjKY43H5KAw7wFPfvuUvNwun7P7aPV495DNV5GNGesiIZOc5UWCwgnLc8MVQp47KBImDJMoHVLnEiWdsbZIZYxCSAMGkoJBDimfkqvRN3xi2-e69dXG-C_dmEovqte5bnyp-15zlQrJBvxixFvffPQYOr1uel8PF2rGKbAUxPDvlFyOlPVNCB6LnS0FvQ1QZyp7-glwOcBnI-yD3XF_AQ_6-X-6bl3BvwEyongw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Nair, A. K</creator><creator>Kumari, P</creator><creator>Kamalakar, M. Venkata</creator><creator>Ray, S. J</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0003-2385-9267</orcidid><orcidid>https://orcid.org/0000-0002-4640-708X</orcidid></search><sort><creationdate>2019</creationdate><title>Dramatic magnetic phase designing in phosphorene</title><author>Nair, A. K ; Kumari, P ; Kamalakar, M. Venkata ; Ray, S. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-685b2bf5e6d6c3ba39e0bbd0f526a28e8de1dd598daccf784e668a0a05f20b073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antiferromagnetism</topic><topic>Atomic properties</topic><topic>Chromium</topic><topic>Copper</topic><topic>Doping</topic><topic>Ferromagnetism</topic><topic>First principles</topic><topic>High temperature</topic><topic>Manganese</topic><topic>Mean field theory</topic><topic>Nickel</topic><topic>Optoelectronics</topic><topic>Phases</topic><topic>Phosphorene</topic><topic>Spintronics</topic><topic>Titanium</topic><topic>Transition metals</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nair, A. K</creatorcontrib><creatorcontrib>Kumari, P</creatorcontrib><creatorcontrib>Kamalakar, M. Venkata</creatorcontrib><creatorcontrib>Ray, S. J</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nair, A. K</au><au>Kumari, P</au><au>Kamalakar, M. Venkata</au><au>Ray, S. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dramatic magnetic phase designing in phosphorene</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2019</date><risdate>2019</risdate><volume>21</volume><issue>42</issue><spage>23713</spage><epage>23719</epage><pages>23713-23719</pages><issn>1463-9076</issn><issn>1463-9084</issn><eissn>1463-9084</eissn><abstract>Phosphorene is a unique two-dimensional semiconductor that exhibits huge potential for nanoelectronic, optoelectronic and spintronic applications and their cross-hybrid electronics. In particular, creation of magnetic phases in phosphorene selectively can provide a multitude of opportunities for developments in 2D spintronic circuits. Doping phosphorene with transition metal atoms can induce sustainable magnetic ordering, making it a diluted magnetic system, however, the viability of high temperature magnetic phases and potential control remain unanswered. In this work, using first-principles calculations, we uncover the impact of doping phosphorene with various 3d block elements (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn) in increasing order of atomic number at various levels of doping. Such an extensive study helps us to find the doping conditions that lead to remarkable feasibility of ferromagnetism and antiferromagnetism up to a strikingly large temperature ∼1150 K, evaluated by mean field theory. The doping concentration and atom type can be used to systematically tune the phases from ferromagnetic and antiferromagnetic to non-magnetic ground states. Our work provides new guidelines for engineering multi-functional spintronic components using phosphorene as a base material for all-phosphorene spintronics. Phosphorene is a unique two-dimensional semiconductor that has huge potential for nanoelectronic and spintronic applications. In the presence of various 3d block elements, remarkable feasibility of ferromagnetism and antiferromagnetism up to a large temperature ∼1150 K was observed.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9cp04871e</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2385-9267</orcidid><orcidid>https://orcid.org/0000-0002-4640-708X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2019, Vol.21 (42), p.23713-23719
issn 1463-9076
1463-9084
1463-9084
language eng
recordid cdi_rsc_primary_c9cp04871e
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Antiferromagnetism
Atomic properties
Chromium
Copper
Doping
Ferromagnetism
First principles
High temperature
Manganese
Mean field theory
Nickel
Optoelectronics
Phases
Phosphorene
Spintronics
Titanium
Transition metals
Viability
title Dramatic magnetic phase designing in phosphorene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T07%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dramatic%20magnetic%20phase%20designing%20in%20phosphorene&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Nair,%20A.%20K&rft.date=2019&rft.volume=21&rft.issue=42&rft.spage=23713&rft.epage=23719&rft.pages=23713-23719&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp04871e&rft_dat=%3Cproquest_rsc_p%3E2310270651%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2310270651&rft_id=info:pmid/&rfr_iscdi=true