Dramatic magnetic phase designing in phosphorene
Phosphorene is a unique two-dimensional semiconductor that exhibits huge potential for nanoelectronic, optoelectronic and spintronic applications and their cross-hybrid electronics. In particular, creation of magnetic phases in phosphorene selectively can provide a multitude of opportunities for dev...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2019, Vol.21 (42), p.23713-23719 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23719 |
---|---|
container_issue | 42 |
container_start_page | 23713 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 21 |
creator | Nair, A. K Kumari, P Kamalakar, M. Venkata Ray, S. J |
description | Phosphorene is a unique two-dimensional semiconductor that exhibits huge potential for nanoelectronic, optoelectronic and spintronic applications and their cross-hybrid electronics. In particular, creation of magnetic phases in phosphorene selectively can provide a multitude of opportunities for developments in 2D spintronic circuits. Doping phosphorene with transition metal atoms can induce sustainable magnetic ordering, making it a diluted magnetic system, however, the viability of high temperature magnetic phases and potential control remain unanswered. In this work, using first-principles calculations, we uncover the impact of doping phosphorene with various 3d block elements (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn) in increasing order of atomic number at various levels of doping. Such an extensive study helps us to find the doping conditions that lead to remarkable feasibility of ferromagnetism and antiferromagnetism up to a strikingly large temperature ∼1150 K, evaluated by mean field theory. The doping concentration and atom type can be used to systematically tune the phases from ferromagnetic and antiferromagnetic to non-magnetic ground states. Our work provides new guidelines for engineering multi-functional spintronic components using phosphorene as a base material for all-phosphorene spintronics.
Phosphorene is a unique two-dimensional semiconductor that has huge potential for nanoelectronic and spintronic applications. In the presence of various 3d block elements, remarkable feasibility of ferromagnetism and antiferromagnetism up to a large temperature ∼1150 K was observed. |
doi_str_mv | 10.1039/c9cp04871e |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9cp04871e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2310270651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-685b2bf5e6d6c3ba39e0bbd0f526a28e8de1dd598daccf784e668a0a05f20b073</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK5evAsr3sTqJGnT5Lh01w9Y0IN6DWkyrV3ctiYt4n9v18p68zDMMO_HY-YRckrhmgJXN1bZFmKZUtwjExoLHimQ8f5uTsUhOQphDQA0oXxCYOHNxnSVnW1MWeN2aN9MwJnDUJV1VZezqh5WTRjKY43H5KAw7wFPfvuUvNwun7P7aPV495DNV5GNGesiIZOc5UWCwgnLc8MVQp47KBImDJMoHVLnEiWdsbZIZYxCSAMGkoJBDimfkqvRN3xi2-e69dXG-C_dmEovqte5bnyp-15zlQrJBvxixFvffPQYOr1uel8PF2rGKbAUxPDvlFyOlPVNCB6LnS0FvQ1QZyp7-glwOcBnI-yD3XF_AQ_6-X-6bl3BvwEyongw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310270651</pqid></control><display><type>article</type><title>Dramatic magnetic phase designing in phosphorene</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Nair, A. K ; Kumari, P ; Kamalakar, M. Venkata ; Ray, S. J</creator><creatorcontrib>Nair, A. K ; Kumari, P ; Kamalakar, M. Venkata ; Ray, S. J</creatorcontrib><description>Phosphorene is a unique two-dimensional semiconductor that exhibits huge potential for nanoelectronic, optoelectronic and spintronic applications and their cross-hybrid electronics. In particular, creation of magnetic phases in phosphorene selectively can provide a multitude of opportunities for developments in 2D spintronic circuits. Doping phosphorene with transition metal atoms can induce sustainable magnetic ordering, making it a diluted magnetic system, however, the viability of high temperature magnetic phases and potential control remain unanswered. In this work, using first-principles calculations, we uncover the impact of doping phosphorene with various 3d block elements (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn) in increasing order of atomic number at various levels of doping. Such an extensive study helps us to find the doping conditions that lead to remarkable feasibility of ferromagnetism and antiferromagnetism up to a strikingly large temperature ∼1150 K, evaluated by mean field theory. The doping concentration and atom type can be used to systematically tune the phases from ferromagnetic and antiferromagnetic to non-magnetic ground states. Our work provides new guidelines for engineering multi-functional spintronic components using phosphorene as a base material for all-phosphorene spintronics.
Phosphorene is a unique two-dimensional semiconductor that has huge potential for nanoelectronic and spintronic applications. In the presence of various 3d block elements, remarkable feasibility of ferromagnetism and antiferromagnetism up to a large temperature ∼1150 K was observed.</description><identifier>ISSN: 1463-9076</identifier><identifier>ISSN: 1463-9084</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp04871e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Antiferromagnetism ; Atomic properties ; Chromium ; Copper ; Doping ; Ferromagnetism ; First principles ; High temperature ; Manganese ; Mean field theory ; Nickel ; Optoelectronics ; Phases ; Phosphorene ; Spintronics ; Titanium ; Transition metals ; Viability</subject><ispartof>Physical chemistry chemical physics : PCCP, 2019, Vol.21 (42), p.23713-23719</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-685b2bf5e6d6c3ba39e0bbd0f526a28e8de1dd598daccf784e668a0a05f20b073</citedby><cites>FETCH-LOGICAL-c422t-685b2bf5e6d6c3ba39e0bbd0f526a28e8de1dd598daccf784e668a0a05f20b073</cites><orcidid>0000-0003-2385-9267 ; 0000-0002-4640-708X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,4026,27930,27931,27932</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-397682$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Nair, A. K</creatorcontrib><creatorcontrib>Kumari, P</creatorcontrib><creatorcontrib>Kamalakar, M. Venkata</creatorcontrib><creatorcontrib>Ray, S. J</creatorcontrib><title>Dramatic magnetic phase designing in phosphorene</title><title>Physical chemistry chemical physics : PCCP</title><description>Phosphorene is a unique two-dimensional semiconductor that exhibits huge potential for nanoelectronic, optoelectronic and spintronic applications and their cross-hybrid electronics. In particular, creation of magnetic phases in phosphorene selectively can provide a multitude of opportunities for developments in 2D spintronic circuits. Doping phosphorene with transition metal atoms can induce sustainable magnetic ordering, making it a diluted magnetic system, however, the viability of high temperature magnetic phases and potential control remain unanswered. In this work, using first-principles calculations, we uncover the impact of doping phosphorene with various 3d block elements (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn) in increasing order of atomic number at various levels of doping. Such an extensive study helps us to find the doping conditions that lead to remarkable feasibility of ferromagnetism and antiferromagnetism up to a strikingly large temperature ∼1150 K, evaluated by mean field theory. The doping concentration and atom type can be used to systematically tune the phases from ferromagnetic and antiferromagnetic to non-magnetic ground states. Our work provides new guidelines for engineering multi-functional spintronic components using phosphorene as a base material for all-phosphorene spintronics.
Phosphorene is a unique two-dimensional semiconductor that has huge potential for nanoelectronic and spintronic applications. In the presence of various 3d block elements, remarkable feasibility of ferromagnetism and antiferromagnetism up to a large temperature ∼1150 K was observed.</description><subject>Antiferromagnetism</subject><subject>Atomic properties</subject><subject>Chromium</subject><subject>Copper</subject><subject>Doping</subject><subject>Ferromagnetism</subject><subject>First principles</subject><subject>High temperature</subject><subject>Manganese</subject><subject>Mean field theory</subject><subject>Nickel</subject><subject>Optoelectronics</subject><subject>Phases</subject><subject>Phosphorene</subject><subject>Spintronics</subject><subject>Titanium</subject><subject>Transition metals</subject><subject>Viability</subject><issn>1463-9076</issn><issn>1463-9084</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK5evAsr3sTqJGnT5Lh01w9Y0IN6DWkyrV3ctiYt4n9v18p68zDMMO_HY-YRckrhmgJXN1bZFmKZUtwjExoLHimQ8f5uTsUhOQphDQA0oXxCYOHNxnSVnW1MWeN2aN9MwJnDUJV1VZezqh5WTRjKY43H5KAw7wFPfvuUvNwun7P7aPV495DNV5GNGesiIZOc5UWCwgnLc8MVQp47KBImDJMoHVLnEiWdsbZIZYxCSAMGkoJBDimfkqvRN3xi2-e69dXG-C_dmEovqte5bnyp-15zlQrJBvxixFvffPQYOr1uel8PF2rGKbAUxPDvlFyOlPVNCB6LnS0FvQ1QZyp7-glwOcBnI-yD3XF_AQ_6-X-6bl3BvwEyongw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Nair, A. K</creator><creator>Kumari, P</creator><creator>Kamalakar, M. Venkata</creator><creator>Ray, S. J</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0003-2385-9267</orcidid><orcidid>https://orcid.org/0000-0002-4640-708X</orcidid></search><sort><creationdate>2019</creationdate><title>Dramatic magnetic phase designing in phosphorene</title><author>Nair, A. K ; Kumari, P ; Kamalakar, M. Venkata ; Ray, S. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-685b2bf5e6d6c3ba39e0bbd0f526a28e8de1dd598daccf784e668a0a05f20b073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antiferromagnetism</topic><topic>Atomic properties</topic><topic>Chromium</topic><topic>Copper</topic><topic>Doping</topic><topic>Ferromagnetism</topic><topic>First principles</topic><topic>High temperature</topic><topic>Manganese</topic><topic>Mean field theory</topic><topic>Nickel</topic><topic>Optoelectronics</topic><topic>Phases</topic><topic>Phosphorene</topic><topic>Spintronics</topic><topic>Titanium</topic><topic>Transition metals</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nair, A. K</creatorcontrib><creatorcontrib>Kumari, P</creatorcontrib><creatorcontrib>Kamalakar, M. Venkata</creatorcontrib><creatorcontrib>Ray, S. J</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nair, A. K</au><au>Kumari, P</au><au>Kamalakar, M. Venkata</au><au>Ray, S. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dramatic magnetic phase designing in phosphorene</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2019</date><risdate>2019</risdate><volume>21</volume><issue>42</issue><spage>23713</spage><epage>23719</epage><pages>23713-23719</pages><issn>1463-9076</issn><issn>1463-9084</issn><eissn>1463-9084</eissn><abstract>Phosphorene is a unique two-dimensional semiconductor that exhibits huge potential for nanoelectronic, optoelectronic and spintronic applications and their cross-hybrid electronics. In particular, creation of magnetic phases in phosphorene selectively can provide a multitude of opportunities for developments in 2D spintronic circuits. Doping phosphorene with transition metal atoms can induce sustainable magnetic ordering, making it a diluted magnetic system, however, the viability of high temperature magnetic phases and potential control remain unanswered. In this work, using first-principles calculations, we uncover the impact of doping phosphorene with various 3d block elements (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn) in increasing order of atomic number at various levels of doping. Such an extensive study helps us to find the doping conditions that lead to remarkable feasibility of ferromagnetism and antiferromagnetism up to a strikingly large temperature ∼1150 K, evaluated by mean field theory. The doping concentration and atom type can be used to systematically tune the phases from ferromagnetic and antiferromagnetic to non-magnetic ground states. Our work provides new guidelines for engineering multi-functional spintronic components using phosphorene as a base material for all-phosphorene spintronics.
Phosphorene is a unique two-dimensional semiconductor that has huge potential for nanoelectronic and spintronic applications. In the presence of various 3d block elements, remarkable feasibility of ferromagnetism and antiferromagnetism up to a large temperature ∼1150 K was observed.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9cp04871e</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2385-9267</orcidid><orcidid>https://orcid.org/0000-0002-4640-708X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2019, Vol.21 (42), p.23713-23719 |
issn | 1463-9076 1463-9084 1463-9084 |
language | eng |
recordid | cdi_rsc_primary_c9cp04871e |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Antiferromagnetism Atomic properties Chromium Copper Doping Ferromagnetism First principles High temperature Manganese Mean field theory Nickel Optoelectronics Phases Phosphorene Spintronics Titanium Transition metals Viability |
title | Dramatic magnetic phase designing in phosphorene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T07%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dramatic%20magnetic%20phase%20designing%20in%20phosphorene&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Nair,%20A.%20K&rft.date=2019&rft.volume=21&rft.issue=42&rft.spage=23713&rft.epage=23719&rft.pages=23713-23719&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp04871e&rft_dat=%3Cproquest_rsc_p%3E2310270651%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2310270651&rft_id=info:pmid/&rfr_iscdi=true |