Dramatic magnetic phase designing in phosphorene

Phosphorene is a unique two-dimensional semiconductor that exhibits huge potential for nanoelectronic, optoelectronic and spintronic applications and their cross-hybrid electronics. In particular, creation of magnetic phases in phosphorene selectively can provide a multitude of opportunities for dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2019, Vol.21 (42), p.23713-23719
Hauptverfasser: Nair, A. K, Kumari, P, Kamalakar, M. Venkata, Ray, S. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phosphorene is a unique two-dimensional semiconductor that exhibits huge potential for nanoelectronic, optoelectronic and spintronic applications and their cross-hybrid electronics. In particular, creation of magnetic phases in phosphorene selectively can provide a multitude of opportunities for developments in 2D spintronic circuits. Doping phosphorene with transition metal atoms can induce sustainable magnetic ordering, making it a diluted magnetic system, however, the viability of high temperature magnetic phases and potential control remain unanswered. In this work, using first-principles calculations, we uncover the impact of doping phosphorene with various 3d block elements (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn) in increasing order of atomic number at various levels of doping. Such an extensive study helps us to find the doping conditions that lead to remarkable feasibility of ferromagnetism and antiferromagnetism up to a strikingly large temperature ∼1150 K, evaluated by mean field theory. The doping concentration and atom type can be used to systematically tune the phases from ferromagnetic and antiferromagnetic to non-magnetic ground states. Our work provides new guidelines for engineering multi-functional spintronic components using phosphorene as a base material for all-phosphorene spintronics. Phosphorene is a unique two-dimensional semiconductor that has huge potential for nanoelectronic and spintronic applications. In the presence of various 3d block elements, remarkable feasibility of ferromagnetism and antiferromagnetism up to a large temperature ∼1150 K was observed.
ISSN:1463-9076
1463-9084
1463-9084
DOI:10.1039/c9cp04871e