From nanofibers to ordered ZnO/NiO heterojunction arrays for self-powered and transparent UV photodetectors
Uniformly aligned electrospun nanofiber arrays are important building blocks for high-performance functional devices and device arrays. However, it remains a challenge to prepare perfectly aligned and large area nanofiber arrays using common electrospinning. In this work, a modified electrospinning...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2019, Vol.7 (2), p.223-229 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Uniformly aligned electrospun nanofiber arrays are important building blocks for high-performance functional devices and device arrays. However, it remains a challenge to prepare perfectly aligned and large area nanofiber arrays using common electrospinning. In this work, a modified electrospinning method utilizing three assisted electrodes for nanofiber collection was proposed to achieve uniformly aligned and millimeter-long ZnO and NiO nanofiber arrays (more than 90% of nanofibers aligned to within ±4° of the desired direction), which were further fabricated into ZnO/NiO heterojunction arrays with a density of 10
6
cm
−2
. Photodetectors (PDs) based on the as-prepared ZnO/NiO heterojunction arrays exhibited excellent ultraviolet (UV) selective and self-powered detection properties because of the properly matched energy bands of ZnO and NiO. A maximum responsivity of 0.415 mA W
−1
and a short rise/decay time of 7.5 s/4.8 s at 0 V bias of the device markedly outstripped the reference ZnO nanofiber array device. The three-assisted-electrode electrospinning method of this work offers new chances in novel nanostructure design and high-performance device fabrication.
Ordered ZnO/NiO heterojunction arrays prepared
via
electrospinning using three-assisted-electrodes were achieved for high-performance self-powered ultraviolet photodetectors. |
---|---|
ISSN: | 2050-7526 2050-7534 |
DOI: | 10.1039/c8tc05877f |