Ordered platinum-bismuth intermetallic clusters with Pt-skin for a highly efficient electrochemical ethanol oxidation reaction
The ethanol oxidation reaction is extensively explored, but electrocatalysts that could achieve a complete oxidation pathway to CO 2 /CO 3 2− are much less reported. Here, we synthesize a monatomic Pt layer (Pt-skin) on ordered intermetallic PtBi clusters (PtBi@Pt) supported on graphene via a single...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019-03, Vol.7 (1), p.5214-522 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ethanol oxidation reaction is extensively explored, but electrocatalysts that could achieve a complete oxidation pathway to CO
2
/CO
3
2−
are much less reported. Here, we synthesize a monatomic Pt layer (Pt-skin) on ordered intermetallic PtBi clusters (PtBi@Pt) supported on graphene
via
a single atom self-assembling (SAS) method to form a superior catalyst. The PtBi@Pt with an ultrafine size (∼2 nm) delivers an extremely high mass activity of 9.01 mA μg
Pt
−1
, which is 8-fold more active than the commercial Pt/C; significantly,
in situ
Fourier transform infrared spectroscopy indicates that ethanol is completely oxidized to CO
3
2−
on the PtBi@Pt, accompanied by 12 electron transfer, as is further demonstrated by the density functional theory results.
A monatomic Pt layer (Pt-skin) on ordered intermetallic PtBi clusters (PtBi@Pt) supported on graphene is fabricated
via
a single atom self-assembling (SAS) method to form a superior catalyst toward electrochemical ethanol oxidation reaction. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/c8ta09553a |