Fluorescence lifetime-activated droplet sorting in microfluidic chip systemsElectronic supplementary information (ESI) available. See DOI: 10.1039/c8lc01278d
We present a highly efficient microfluidic fluorescence lifetime-activated droplet sorting (FLADS) approach as a novel technology for droplet manipulation in lab-on-a-chip devices. In a proof-of-concept study, we successfully applied the approach to sort droplets containing two different fluorescent...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a highly efficient microfluidic fluorescence lifetime-activated droplet sorting (FLADS) approach as a novel technology for droplet manipulation in lab-on-a-chip devices. In a proof-of-concept study, we successfully applied the approach to sort droplets containing two different fluorescent compounds on the basis of their corresponding fluorescence lifetime. Towards this end, a technical set-up was developed enabling on-the-fly fluorescence lifetime determination of passing droplets. The herein developed LabVIEW program enabled fast triggering of a downstream dielectrophoretic force sorting functionality depending on average fluorescence lifetimes of individual droplets. The approach worked reliably at individual substrate concentrations from 1 nM to 1 mM. This not only allowed reliable sorting of droplets containing species with different fluorescence lifetimes but also enabled differentiation of mixtures in individual droplets.
We present a highly efficient microfluidic fluorescence lifetime-activated droplet sorting (FLADS) approach as a novel technology for droplet manipulation in lab-on-a-chip devices. |
---|---|
ISSN: | 1473-0197 1473-0189 |
DOI: | 10.1039/c8lc01278d |