Water-borne coatings that share the mechanism of action of oil-based coatingsElectronic supplementary information (ESI) available. See DOI: 10.1039/c8gc00130h
Because oil- or solvent-based coatings ( e.g. paints, varnishes, sealants) emit volatile organic compounds (VOCs), replacement with aqueous coating formulations is desirable. However, water-based (latex) coatings which are dispersions of polymer particles, are out-performed by solvent-based coatings...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Because oil- or solvent-based coatings (
e.g.
paints, varnishes, sealants) emit volatile organic compounds (VOCs), replacement with aqueous coating formulations is desirable. However, water-based (latex) coatings which are dispersions of polymer particles, are out-performed by solvent-based coatings in hardness, durability, gloss and cold-weather application. The challenge with latexes is that discrete polymer particles must coalesce to form a complete film, a complex process that often leads to imperfections in the coating. Proof-of-concept results show that CO
2
-responsive copolymers can form the basis of a water-borne coating in which the polymer is fully dissolved before application and yet water-resistant after application to a surface. These polymers are insoluble in neutral water, but dissolve fully in carbonated water. When a carbonated solution of polymer is cast onto a substrate, the subsequent loss of CO
2
and water by evaporation results in a clear, continuous water-resistant coating. With further development, these new coatings may retain the VOC-free advantage of water-based coatings while eliminating the need for coalescence of particles.
A new coating performs like an oil-based paint, with fully dissolved polymer, but uses water as a solvent. |
---|---|
ISSN: | 1463-9262 1463-9270 |
DOI: | 10.1039/c8gc00130h |