Inorganic sulfites as the sulfur dioxide surrogates in sulfonylation reactions

Recent advances in the sulfonylation reactions by using inorganic sulfites as the source of sulfonyl group are reported. The approaches employing inorganic sulfites as sulfur dioxide surrogates are attractive and promising for the synthesis of sulfonyl compounds since inorganic sulfites are abundant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical communications (Cambridge, England) England), 2019-01, Vol.55 (8), p.113-119
Hauptverfasser: Ye, Shengqing, Qiu, Guanyinsheng, Wu, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent advances in the sulfonylation reactions by using inorganic sulfites as the source of sulfonyl group are reported. The approaches employing inorganic sulfites as sulfur dioxide surrogates are attractive and promising for the synthesis of sulfonyl compounds since inorganic sulfites are abundant, easily available and cheap. The transformations using inorganic sulfites as the source of sulfonyl group work efficiently, providing diverse sulfonyl compounds including sulfones and sulfonamides. The sulfonylation reactions can be performed under transition metal catalysis or through radical processes under catalyst- and additive-free conditions. In some cases, a photocatalyst is employed under visible-light irradiation to facilitate the transformation. For the sulfur dioxide surrogate of inorganic sulfites, potassium metabisulfite or sodium metabisulfite has been broadly used in various transformations. However, the reactivities of inorganic sulfites in organic reactions still need to be explored. Recent advances in the sulfonylation reactions by using inorganic sulfites as the source of sulfonyl group are reported. The approaches employing inorganic sulfites as the sulfur dioxide surrogates are attractive and promising for the synthesis of sulfonyl compounds since inorganic sulfites are abundant, easily available and cheap.
ISSN:1359-7345
1364-548X
DOI:10.1039/c8cc09250h