High-throughput screening of bimetallic catalysts enabled by machine learning
We present a holistic machine-learning framework for rapid screening of bimetallic catalysts with the aid of the descriptor-based kinetic analysis. A catalyst database, which contains the adsorption energies of *CO and *OH on {111}-terminated model alloy surfaces and fingerprint features of active s...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2017, Vol.5 (46), p.24131-24138 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a holistic machine-learning framework for rapid screening of bimetallic catalysts with the aid of the descriptor-based kinetic analysis. A catalyst database, which contains the adsorption energies of *CO and *OH on {111}-terminated model alloy surfaces and fingerprint features of active sites from density functional theory calculations with the semi-local generalized gradient approximation (GGA), is established and used in optimizing the structural and weight parameters of artificial neural networks. The fingerprint descriptors, rooted at the d-band chemisorption theory and its recent developments, include the sp-band and d-band characteristics of an adsorption site together with tabulated properties of host-metal atoms. Using methanol electro-oxidation as the model reaction, the machine-learning model trained with the existing dataset of ∼1000 idealized alloy surfaces can capture complex, non-linear adsorbate/metal interactions with the RMSE ∼ 0.2 eV and shows predictive power in exploring the immense chemical space of bimetallic catalysts. Feature importance analysis sheds light on the underlying factors that govern the adsorbate/metal interactions and provides the physical origin of bimetallics in breaking energy-scaling constraints of *CO and *OH, the two most commonly used reactivity descriptors in heterogeneous catalysis.
We present a holistic machine-learning framework for rapid screening of bimetallic catalysts with the aid of the descriptor-based kinetic analysis. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/c7ta01812f |