Gold nanoparticles-supported histamine-grafted monolithic capillaries as efficient microreactors for flow-through reduction of nitro-containing compoundsElectronic supplementary information (ESI) available: SEM images and EDX spectra of the monoliths. See DOI: 10.1039/c7ta00410a
A histamine functionalized monolith was synthesized within a micro-sized channel as a permeable support for the immobilization of 5, 20 and 100 nm-sized gold nanoparticles and the resulting nanostructured hybrid monoliths were applied as microreactors for the catalytic reduction of nitro-derivatives...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A histamine functionalized monolith was synthesized within a micro-sized channel as a permeable support for the immobilization of 5, 20 and 100 nm-sized gold nanoparticles and the resulting nanostructured hybrid monoliths were applied as microreactors for the catalytic reduction of nitro-derivatives. The whole synthetic pathway of the composite materials relies on (i) UV-induced polymerization of
N
-acryloxysuccinimide and ethylene glycol dimethacrylate in toluene, (ii) surface grafting of histamine through nucleophilic substitution of hydroxysuccinimide leaving groups, and (iii) specific adsorption of citrate-stabilized colloidal gold nanoparticles. The achievement of the successive synthetic steps was ascertained by using a combination of experimental techniques providing information about the chemical composition (FTIR, Raman, and EDX) and porosity and surface-dispersion (SEM) of gold nanoparticles. Of particular interest, it is shown that surface-grafted histamine units exhibit strong affinity towards gold nanoparticles and allow homogeneous and dense dispersion of 5 and 20 nm sized nanoparticles. Consequently, the gold nanoparticle size-dependence of the catalytic activity (conversion of nitro and di-nitro aromatic compounds into the corresponding amino and di-amino-derivatives) was demonstrated, highlighting the utmost importance of controlling the dispersion of nano-catalysts on the support surface, while histamine protonation was also evidenced as a parameter of paramount importance regarding nanogold surface density and thus resulting catalytic activity. Histamine protonation notably allows the generation of electrostatic interactions between citrate-coated gold nanoparticles and thus-formed positive charges at the monolith surface.
Hybrid microreactors consisting in 5, 20, 100 nm-sized gold nanoparticles immobilized on histamine grafted polymeric monoliths were successfully prepared, finely characterized and further applied to the catalytic reduction of nitro-derivatives. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/c7ta00410a |