Preparation, characterization and in vitro study of liposomal curcumin powder by cost effective nanofiber weaving technology

Liposomes can facilitate the incorporation of both hydrophilic and hydrophobic molecules into nutraceutical products through a constructive impact on their stability, drug delivery and bioavailability. Liposomal products are mostly available in a liquid/suspension form, because phospholipids are sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of chemistry 2018, Vol.42 (7), p.5117-5127
Hauptverfasser: Gopi, Sreeraj, Amalraj, Augustine, Jacob, Joby, Kalarikkal, Nandakumar, Thomas, Sabu, Guo, Qipeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Liposomes can facilitate the incorporation of both hydrophilic and hydrophobic molecules into nutraceutical products through a constructive impact on their stability, drug delivery and bioavailability. Liposomal products are mostly available in a liquid/suspension form, because phospholipids are stabilized by a water-in-oil emulsion as a vehicle-like compartment for encapsulation. Although, they have low stability due to the randomness of bilayer folding of phospholipids in the presence of water typically leading to non-uniform formation in both shape and size. In this study, a powder form of the phospholipid vehicle was formulated with a nanofiber fabrication via nanofiber weaving (NFW) technology by high pressure homogenization and removal of water through a spray drying process. We designed and developed a liposomal curcumin powder (LCP) based on NFW technology to enhance the bioavailability of curcumin and improve the stability of LCP. The encapsulation efficiency, loading capacity, in vitro release and DPPH activity revealed that LCP could be a promising drug delivery system for curcumin due to the use of NFW technology. Liposomes can facilitate the incorporation of both hydrophilic and hydrophobic molecules into nutraceutical products through a constructive impact on their stability, drug delivery and bioavailability.
ISSN:1144-0546
1369-9261
DOI:10.1039/c7nj05029a