LiGa5O8:Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic therapy of deep-seated tumorsElectronic supplementary information (ESI) available. See DOI: 10.1039/c7mh00442g

Using X-rays as the irradiation source, a photodynamic therapy process can be initiated in deep tissues. This technology, referred to as X-ray induced PDT, or X-PDT, holds great potential to treat tumors in internal organs. To this end, one question is how to navigate the treatment of tumors with ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chen, Hongmin, Sun, Xilin, Wang, Geoffrey D, Nagata, Koichi, Hao, Zhonglin, Wang, Andrew, Li, Zibo, Xie, Jin, Shen, Baozhong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using X-rays as the irradiation source, a photodynamic therapy process can be initiated in deep tissues. This technology, referred to as X-ray induced PDT, or X-PDT, holds great potential to treat tumors in internal organs. To this end, one question is how to navigate the treatment of tumors with accuracy using external irradiation. Herein we address this issue using a novel LiGa 5 O 8 :Cr (LGO:Cr)-based nanoscintillator, which emits persistent, near-infrared X-ray luminescence. This permits deep-tissue optical imaging that can be employed to guide irradiation. Specifically, we encapsulated LGO:Cr nanoparticles and a photosensitizer, 2,3-naphthalocyanine, into mesoporous silica nanoparticles. The nanoparticles were conjugated with cetuximab and systemically injected into H1299 orthotopic non-small cell lung cancer tumor models. The nanoconjugates can efficiently accumulate in tumors in the lungs, confirmed by monitoring the X-ray luminescence from LGO:Cr. Guided by the imaging, external irradiation was applied, leading to efficient tumor suppression while minimally affecting normal tissues. To the best of our knowledge, the present study is the first to demonstrate, with systematically injected nanoparticles, that X-PDT can suppress the growth of deep-seated tumors. The imaging guidance is also new to X-PDT, and is significant to the further transformation of the technology. LiGa 5 O 8 :Cr nanoparticles mediate near-infrared X-ray luminescence and X-ray induced photodynamic therapy, making them attractive theranostic agents for cancer therapy.
ISSN:2051-6347
2051-6355
DOI:10.1039/c7mh00442g