Enhanced catalytic activity and near room temperature gas sensing properties of SnO2 nanoclusters@mesoporous Sn(iv) organophosphonate compositeDedicated to Prof. Mihir K. Chaudhuri on the occasion of his 70th birthday.Electronic supplementary information (ESI) available: Synthesis, characterization and details of catalytic studies. See DOI: 10.1039/c7dt01939d

A simple, facile and one-pot route for preparing SnO 2 nanoclusters embedded on a mesoporous Sn( iv ) organophosphonate (MSnP) framework is described. Reaction of SnCl 4 ·5H 2 O with a flexible tris-phosphonic acid, mesityl-1,3,5-tris(methylenephosphonic acid), in the presence of a surfactant under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Borah, Suchibrata, Bhattacharyya, Bagmita, Deka, Jumi, Borah, Aditya, Devi, Anuchaya, Deka, Dhanapati, Mishra, Shashank, Raidongia, Kalyan, Gogoi, Nayanmoni
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A simple, facile and one-pot route for preparing SnO 2 nanoclusters embedded on a mesoporous Sn( iv ) organophosphonate (MSnP) framework is described. Reaction of SnCl 4 ·5H 2 O with a flexible tris-phosphonic acid, mesityl-1,3,5-tris(methylenephosphonic acid), in the presence of a surfactant under hydrothermal conditions produced the desired nanocomposite, SnO 2 @MSnP. Analytical, spectroscopic and microscopic studies establish that SnO 2 @MSnP composite is comprised of SnO 2 nanoparticles of an average size of 5 nm evenly and abundantly dispersed over the MSnP framework. The mesoporous metal organophosphonate support significantly augments the catalytic efficacy and vapor sensitivity of SnO 2 nanoparticles. The catalytic efficiency of SnO 2 @MSnP was tested for two acid-catalyzed reactions: deoximation reaction and esterification of fatty acids. SnO 2 @MSnP exhibits remarkable sensitivity towards ammonia and acetone vapors at near room temperature and under open atmospheric conditions. The present method represents an important step towards preparation of mesoporous metal organophosphonate supported metal oxide nanoclusters and hence offers easy access to functional metal oxide based nanocomposites. A simple route for preparing SnO 2 nanoclusters embedded on mesoporous Sn( iv ) organophosphonate framework is described.
ISSN:1477-9226
1477-9234
DOI:10.1039/c7dt01939d