Synthesis of micro/nanoscaled metalorganic frameworks and their direct electrochemical applications
As a new class of crystalline porous materials, metal-organic frameworks (MOFs) have received great attention owing to their unique advantages of ultrahigh surface area, large pore volume and versatile applications. Developing different strategies to control the morphology and size of MOFs is very i...
Gespeichert in:
Veröffentlicht in: | Chemical Society reviews 2020-01, Vol.49 (1), p.31-331 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As a new class of crystalline porous materials, metal-organic frameworks (MOFs) have received great attention owing to their unique advantages of ultrahigh surface area, large pore volume and versatile applications. Developing different strategies to control the morphology and size of MOFs is very important for their practical applications. Recently, micro/nanosized MOFs have been regarded as promising candidates for electrode materials with excellent performances, which not only bridge the gap between fundamental MOF science and forward-looking applications, but also provide an opportunity to make clear the relationship between morphologies and properties. This review focuses on the design and fabrication of one-, two- and three-dimensional MOFs at micro/nanoscale, and their direct applications in batteries, supercapacitors and electrocatalysis. A discussion on challenges and future prospects of the synthesis and electrochemical applications of micro/nanoscaled MOF materials is presented.
Developing strategies to control the morphology and size of MOFs is important for their applications in batteries, supercapacitors and electrocatalysis. This review focuses on the design and fabrication of MOFs at the micro/nanoscale. |
---|---|
ISSN: | 0306-0012 1460-4744 |
DOI: | 10.1039/c7cs00614d |