Click modified amphiphilic graft copolymeric micelles of poly(styrene-alt-maleic anhydride) for combinatorial delivery of doxorubicin and plk-1 siRNA in cancer therapyElectronic supplementary information (ESI) available. See DOI: 10.1039/c6tb02094a

The anti-apoptotic defense mechanism of cancer cells poses a major hurdle which makes chemotherapy less effective. Combinatorial delivery of drugs and siRNAs targeting anti-apoptotic proteins is a vital means for improving therapeutic effects. The present study aims at designing a suitable carrier w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Aji Alex, M. R, Veeranarayanan, Srivani, Poulose, Aby Cheruvathoor, Nehate, Chetan, Kumar, D. Sakthi, Koul, Veena
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The anti-apoptotic defense mechanism of cancer cells poses a major hurdle which makes chemotherapy less effective. Combinatorial delivery of drugs and siRNAs targeting anti-apoptotic proteins is a vital means for improving therapeutic effects. The present study aims at designing a suitable carrier which can effectively co-deliver doxorubicin and plk1 siRNA to tumor cells. Low molecular weight poly(styrene- alt -maleic anhydride) was chemically modified via a click reaction to obtain a cationic amphiphilic polymer for the co-delivery of therapeutic agents. Short glycol chains were utilized as linker molecules for grafting which in turn imparted a stealth nature and minimized plasma protein adsorption to the polymeric surface. Isonicotinic acid was grafted to the polymer due to its ability to penetrate the endolysosomal membrane and arginine-lysine conjugates were embedded for complexing siRNA. The polymer was able to self-assemble in to smooth, spherical micellar structures with a CMC of ∼3 μg mL −1 . The particle size of the micelles was ∼14-30 nm as depicted using TEM and FESEM. Atomic force microscopic analysis showed an average height of ∼12 nm for the polymeric micelles. An optimum doxorubicin loading of ∼9% w/w was achieved with the micelles using a dialysis method. Effective complexation of siRNA occurred above a polymer/siRNA weight ratio of 10 without any significant change in the particle size. Doxorubicin and fluorescent labeled siRNA loaded micelles exhibited excellent co-localization within the cytoplasm of MCF-7 cells. The synergistic effect of the active agents in inhibiting tumor cell proliferation was depicted using an MTT assay and visualized using calcein/propidium iodide staining of the treated cells. Co-administration of doxorubicin and plk1 siRNA in EAT tumor bearing Swiss albino mice using the cationic micelles significantly enhanced the antitumor efficacy. Co-delivery of drug and siRNA using cationic polymeric micelles.
ISSN:2050-750X
2050-7518
DOI:10.1039/c6tb02094a