An investigation on the influence of catalyst composition, calcination and reduction temperatures on Ni/MgO catalyst for dry reforming of methane

In the present paper, the following issues regarding the dry reforming of methane, over Ni/MgO catalyst prepared by microemulsion synthesis were investigated: (i) the effect of nickel content (20, 40 and 80 wt%) in the Ni/MgO catalyst (ii) the effect of calcination temperatures (450 °C, 600 °C and 8...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2016-01, Vol.6 (94), p.9163-91616
Hauptverfasser: Usman, Muhammad, Wan Daud, W. M. A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper, the following issues regarding the dry reforming of methane, over Ni/MgO catalyst prepared by microemulsion synthesis were investigated: (i) the effect of nickel content (20, 40 and 80 wt%) in the Ni/MgO catalyst (ii) the effect of calcination temperatures (450 °C, 600 °C and 800 °C) on the solid solution formation between NiO and MgO (iii) the effect of reduction temperatures (550 °C and 800 °C) on the catalytic activity and stability of the catalyst at a very high space velocity of the reactants (CH 4 /CO 2 = 1, GHSV = 1.68 × 10 5 ml h −1 g −1 ). Under optimum conditions, the Ni/MgO catalyst having higher Ni content (80%), calcined at higher temperature (800 °C) and reduced at lower temperature (550 °C) exhibited better catalytic activity and stability. This was attributed to the presence of higher Ni o active sites, formation of a strong NiO-MgO solid solution and also the catalyst was less prone to sintering at a lower reduction temperature. Furthermore, BET analysis of the Ni/MgO catalysts indicates a decrease in surface area from 153.22 to 54.01 m 2 g −1 , as the Ni content was increased from 20% to 80%, respectively. Furthermore, fresh and spent catalysts were characterized by BET, XRD, TPR-H 2 , CO 2 -TPD, FESEM and TEM. Catalytic activity of Ni/MgO catalyst investigated at different Ni content (20, 40 and 80 wt%), calcination (450, 600 and 800 °C) and reduction temperatures (550 and 800 °C) for dry reforming reaction at very high space velocity.
ISSN:2046-2069
2046-2069
DOI:10.1039/c6ra15256b