New approaches and omics tools for mining of vaccine candidates against vector-borne diseases

Vector-borne diseases (VBDs) present a major threat to human and animal health, as well as place a substantial burden on livestock production. As a way of sustainable VBD control, focus is set on vaccine development. Advances in genomics and other "omics" over the past two decades have giv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular bioSystems 2016-08, Vol.12 (9), p.268-2694
Hauptverfasser: Kuleš, Josipa, Horvati, Anita, Guillemin, Nicolas, Galan, Asier, Mrljak, Vladimir, Bhide, Mangesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vector-borne diseases (VBDs) present a major threat to human and animal health, as well as place a substantial burden on livestock production. As a way of sustainable VBD control, focus is set on vaccine development. Advances in genomics and other "omics" over the past two decades have given rise to a "third generation" of vaccines based on technologies such as reverse vaccinology, functional genomics, immunomics, structural vaccinology and the systems biology approach. The application of omics approaches is shortening the time required to develop the vaccines and increasing the probability of discovery of potential vaccine candidates. Herein, we review the development of new generation vaccines for VBDs, and discuss technological advancement and overall challenges in the vaccine development pipeline. Special emphasis is placed on the development of anti-tick vaccines that can quell both vectors and pathogens. The availability of omics datasets coupled to high-throughput and bioinformatics analyses enabled rational and faster identification of new generation vaccine candidates.
ISSN:1742-206X
1742-2051
DOI:10.1039/c6mb00268d