Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sourcesElectronic supplementary information (ESI) available. See DOI: 10.1039/c6ee02650h

With rapid and brilliant progress in performance over recent years, perovskite solar cells have drawn increasing attention for portable power source applications. Their advantageous features such as high efficiency, low cost, light weight and flexibility should be maximized if a robust and reliable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yoon, Jungjin, Sung, Hyangki, Lee, Gunhee, Cho, Woohyung, Ahn, Namyoung, Jung, Hyun Suk, Choi, Mansoo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With rapid and brilliant progress in performance over recent years, perovskite solar cells have drawn increasing attention for portable power source applications. Their advantageous features such as high efficiency, low cost, light weight and flexibility should be maximized if a robust and reliable flexible transparent electrode is offered. Here we demonstrate highly efficient and reliable super flexible perovskite solar cells using graphene as a transparent electrode. The device performance reaches 16.8% with no hysteresis comparable to that of the counterpart fabricated on a flexible indium-tin-oxide electrode showing a maximum efficiency of 17.3%. The flexible devices also demonstrate superb stability against bending deformation, maintaining >90% of its original efficiency after 1000 bending cycles and 85% even after 5000 bending cycles with a bending radius of 2 mm. This overwhelming bending stability highlights that perovskite photovoltaics with graphene electrodes can pave the way for rollable and foldable photovoltaic applications. With rapid and brilliant progress in performance over recent years, perovskite solar cells have drawn increasing attention for portable power source applications.
ISSN:1754-5692
1754-5706
DOI:10.1039/c6ee02650h