Hydrocarbon constrained peptides - understanding preorganisation and binding affinity

The development of constrained peptides represents an emerging strategy to generate peptide based probes and hits for drug-discovery that address challenging protein-protein interactions (PPIs). In this manuscript we report on the use of a novel α-alkenylglycine derived amino acid to synthesise hydr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2016-01, Vol.7 (6), p.3694-372
Hauptverfasser: Miles, Jennifer A, Yeo, David J, Rowell, Philip, Rodriguez-Marin, Silvia, Pask, Christopher M, Warriner, Stuart L, Edwards, Thomas A, Wilson, Andrew J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of constrained peptides represents an emerging strategy to generate peptide based probes and hits for drug-discovery that address challenging protein-protein interactions (PPIs). In this manuscript we report on the use of a novel α-alkenylglycine derived amino acid to synthesise hydrocarbon constrained BH3-family sequences (BIM and BID). Our biophysical and structural analyses illustrate that whilst the introduction of the constraint increases the population of the bioactive α-helical conformation of the peptide in solution, it does not enhance the inhibitory potency against pro-apoptotic Bcl-x L and Mcl-1 PPIs. SPR analyses indicate binding occurs via an induced fit mechanism whilst X-ray analyses illustrate none of the key interactions between the helix and protein are disturbed. The behaviour derives from enthalpy-entropy compensation which may be considered in terms of the ground state energies of the unbound constrained and unconstrained peptides; this has implications for the design of preorganised peptides to target protein-protein interactions. Biophysical studies on hydrocarbon constrained peptides reveal induced fit binding and enthalpy-entropy compensation on target protein recognition.
ISSN:2041-6520
2041-6539
DOI:10.1039/c5sc04048e