Compromising high strength and ductility in nanoglass-metallic glass nanolaminates

We use large-scale molecular-dynamics simulations to investigate the deformation and failure mechanisms associated with tensile loading of 50 nm diameter Cu 64 Zr 36 nanolaminate nanopillars constructed either as 5 nm thick layers of metallic glass (MG) or alternating 5 nm thick layers of MG and 5 n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2016-01, Vol.6 (16), p.13548-13553
Hauptverfasser: Adibi, Sara, Branicio, Paulo S, Ballarini, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use large-scale molecular-dynamics simulations to investigate the deformation and failure mechanisms associated with tensile loading of 50 nm diameter Cu 64 Zr 36 nanolaminate nanopillars constructed either as 5 nm thick layers of metallic glass (MG) or alternating 5 nm thick layers of MG and 5 nm grain sized nanoglass (NG). The MG-MG nanolaminate exhibits delayed shear band formation and diffused shear banding failure while the NG-MG nanolaminate shows exceptional plasticity to a strain of = 0.15 prior to a necking-type failure. The MG-MG nanopillar has approximately the same restricted ductility and ∼15% lower strength than a reference MG nanopillar. The NG-MG nanopillar, on the other hand, retains the same level of ductility but displays ∼20% higher strength than a reference NG nanopillar. These results suggest that nanolaminates of NG and MG offer promise for creating structures that combine outstanding strength and ductility. Large-scale molecular-dynamics simulations are used to investigate the mechanical properties of 50 nm diameter Cu 64 Zr 36 nanolaminate nanopillars constructed from 5 nm thick layers of metallic glass (MG) or MG and 5 nm grain sized nanoglass.
ISSN:2046-2069
2046-2069
DOI:10.1039/c5ra24715b