Phosphonium ionenes from well-defined step-growth polymerization: thermal and melt rheological propertiesElectronic supplementary information (ESI) available: NMR spectra and melt rheology of phosphonium ionenes. See DOI: 10.1039/c3py00365e

Step-growth polymerization of ditertiary phosphines with dibromoalkanes enabled the synthesis of novel phosphonium ionenes. In situ FTIR spectroscopy monitored the increase in absorbance as a function of time at 1116 cm 1 , which corresponded to the polymeric P + Ph stretch. Aqueous size-exclusion c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hemp, Sean T, Zhang, Musan, Tamami, Mana, Long, Timothy E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Step-growth polymerization of ditertiary phosphines with dibromoalkanes enabled the synthesis of novel phosphonium ionenes. In situ FTIR spectroscopy monitored the increase in absorbance as a function of time at 1116 cm 1 , which corresponded to the polymeric P + Ph stretch. Aqueous size-exclusion chromatography (SEC) provided absolute molecular weights and confirmed expected molecular weight growth for difunctional, step-growth polymerization. Phosphonium ionenes exhibited improved thermal and base stability compared to ammonium ionenes, which was attributed to the propensity of the ammonium cation towards Hofmann elimination. Melt rheology examined phosphonium ionene viscous flow and the influence of charge density on melt viscosity as a function of shear rate and temperature. Timetemperature superposition (TTS) resulted in both master curves and pseudomaster curves depending on phosphonium ionene composition. Two primary relaxations occurred: (1) onset of long-range segmental motion at T g , and (2) relaxation attributed to electrostatic interactions. Higher charge densities shifted these two relaxations to longer time scales and increased flow activation energies. Phosphonium ionenes also readily bound pDNA effectively ( ratios of 1), and base stability suggested applications in energy generation. A novel family of phosphonium ionenes was synthesized using step-growth polymerization, and they displayed excellent thermal and chemical stabilities.
ISSN:1759-9954
1759-9962
DOI:10.1039/c3py00365e