The battle for the "green" polymer. Different approaches for biopolymer synthesis: bioadvantaged vs. bioreplacement

Biopolymers have been used throughout history; however, in the last two centuries they have seen a decrease in their utilization as the proliferation of inexpensive and mass-produced materials from petrochemical feedstocks quickly became better-suited to meeting society's needs. In recent years...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Organic & biomolecular chemistry 2014-05, Vol.12 (18), p.2834-2849
Hauptverfasser: Hernández, Nacú, Williams, R. Christopher, Cochran, Eric W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biopolymers have been used throughout history; however, in the last two centuries they have seen a decrease in their utilization as the proliferation of inexpensive and mass-produced materials from petrochemical feedstocks quickly became better-suited to meeting society's needs. In recent years, high petroleum prices and the concern of society to adopt greener and cleaner products has led to an increased interest in biorenewable polymers and the use of sustainable technologies to produce them. Industrial and academic researchers alike have targeted several routes for producing these renewable materials. In this perspective, we compare and contrast two distinct approaches to the economical realization of these materials. One mentality that has emerged we term "bioreplacement", in which the fields of synthetic biology and catalysis collaborate to coax petrochemical monomers from sugars and lignocellulosic feedstocks that can subsequently be used in precisely the same ways to produce precisely the same polymers as we know today. For example, the metabolic engineering of bacteria is currently being explored as a viable route to common monomers such as butadiene, isoprene, styrene, acrylic acid, and sebacic acid, amongst others. Another motif that has recently gained traction may be referred to as the "bioadvantage" strategy, where the multifunctional "monomers" given to us by nature are combined in novel ways using novel chemistries to yield new polymers with new properties; for these materials to compete with their petroleum-based counterparts, they must add some advantage, for example less cost. For instance, acrylated epoxidized soybean oil readily undergoes polymerization to thermosets and recently, thermoplastic rubbers. Additionally, many plants produce pre-polymeric or polymeric materials that require little or no post modification to extract and make use of these compounds. In this perspective we compare and contrast two distinct approaches to the economical realization of biomaterials.
ISSN:1477-0520
1477-0539
DOI:10.1039/c3ob42339e