Kinetochore genes are required to fully activate secretory pathway expansion in S. cerevisiae under induced ER stressElectronic supplementary information (ESI) available. See DOI: 10.1039/c3mb70414a
Basal ER stress occurs when proteins misfold in normal physiological conditions and are corrected by the unfolded protein response (UPR). Elevated ER stress occurs when misfolding is refractory as found in numerous diseases such as atherosclerosis, Type II diabetes and some cancers. In elevated ER s...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Basal ER stress occurs when proteins misfold in normal physiological conditions and are corrected by the unfolded protein response (UPR). Elevated ER stress occurs when misfolding is refractory as found in numerous diseases such as atherosclerosis, Type II diabetes and some cancers. In elevated ER stress it is unclear whether cells utilise the same or different networks of genes as in basal levels of ER stress. To probe this question, we used secretory pathway reporters Yip3p-GFP, Erv29p-GFP, Orm2p-GFP and UPREpr-GFP placed on the yeast deletion mutant array (DMA) genetic background. The reporter's expression levels, measured by automated microscopy, at basal
versus
elevated ER stress induced by the over-expression of CPY* were compared. A novel group of kinetochore genes (
CTF19
complex) were found to be uniquely required for full induction of all four ER stress reporters in elevated stress. A follow-up reporter screen was developed by mating the
ctf19Δ
kinetochore gene deletion strain into the genome-wide XXXp-GFP tagged library then testing with over-expressed CPY*. This screen identified Bcy1p and Bfr1p as possible signalling points that down-regulate the UPR and secretory pathway when kinetochore proteins are absent under elevated stress conditions. Bfr1p appears to be a checkpoint that monitors the integrity of kinetochores at increased levels of ER stress. This study concludes that functional kinetochores are required for full activation of the secretory pathway in elevated ER stress and that the responses to basal and elevated levels of ER stress require different networks of genes.
A screen for secretory pathway expansion caused by over-expression of CPY* using several GFP labelled reporters on the yeast deletion mutant array genetic background showed that kinetochore genes are required for full expansion. |
---|---|
ISSN: | 1742-206X 1742-2051 |
DOI: | 10.1039/c3mb70414a |