Three-dimensional analysis of lipid vesicle transformations

We use fast confocal laser microscopy to quantitatively study axisymmetric and nonaxisymmetric shapes of lipid vesicles undergoing spontaneous transformations. To characterize the observed three-dimensional shapes, we compute their respective reduced monolayer area difference and reduced volume. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2012-01, Vol.8 (33), p.8569-8581
Hauptverfasser: Sakashita, Ai, Urakami, Naohito, Ziherl, Primo, Imai, Masayuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use fast confocal laser microscopy to quantitatively study axisymmetric and nonaxisymmetric shapes of lipid vesicles undergoing spontaneous transformations. To characterize the observed three-dimensional shapes, we compute their respective reduced monolayer area difference and reduced volume. The transformations allow us to analyze a broad range of vesicle shapes including stomatocytes, elliptocytes, discocytes, cigars, necklaces, and many nonaxisymmetric shapes. The transformations are marked by a step-like time dependence of the reduced monolayer area difference, which is explained in terms of the area-difference-elasticity model. The simplest mechanism consistent with the observed shape transformations are small folded multilamellar patches on either monolayer. The experimental methodology validated by the reported results can be used to monitor and analyze more complex vesicle shapes and their evolution. We use fast confocal laser microscopy to quantitatively study axisymmetric and nonaxisymmetric shapes of lipid vesicles undergoing spontaneous transformations.
ISSN:1744-683X
1744-6848
DOI:10.1039/c2sm25759a