Triple-shape memory effect of covalently crosslinked polyalkenamer based semicrystalline polymer blends

Triple-shape memory polymers are developed by blending and crosslinking two semicrystalline polymers (poly(cyclooctene), PCO, and polyethylene, PE) towards creating two pronounced segregated crystalline domains within a covalently crosslinked network. The key thermo-mechanical properties of a series...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2012-01, Vol.8 (18), p.4928-4935
Hauptverfasser: Cuevas, Jos M, Rubio, Raquel, Germn, Lorena, Laza, Jos M, Vilas, Jos L, Rodriguez, Matilde, Len, Luis M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Triple-shape memory polymers are developed by blending and crosslinking two semicrystalline polymers (poly(cyclooctene), PCO, and polyethylene, PE) towards creating two pronounced segregated crystalline domains within a covalently crosslinked network. The key thermo-mechanical properties of a series of a polyalkenamer and a polyolefin based polymer blends are characterised using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Furthermore, the versatile multi-shape memory functionality is demonstrated, and main shape memory response is evaluated by performing consecutive thermo-mechanical bending experiments based on a two-step programming process and subsequent progressive thermal recovery. The proposed approach, thanks to the excellent achieved shape memory properties, as well as the possibility of tailoring the thermo-mechanical response, is presented as a versatile method to increase the potential applications of these thermo-active materials by designing optimal compositions. New triple-shape memory polymer blends are created by segregated crystalline domains acting as discrete switching shape thermal transitions within a common crosslinked network.
ISSN:1744-683X
1744-6848
DOI:10.1039/c2sm07481h