Low-temperature hydrothermal synthesis of α-Fe/Fe3O4 nanocomposite for fast Congo red removal
A facile low-temperature hydrothermal process to synthesize α-Fe/Fe 3 O 4 nanocomposite is reported. TEM and HRTEM revealed that the α-Fe/Fe 3 O 4 nanocomposite was composed of catenulate α-Fe and lamellar structured Fe 3 O 4 . The weight ratio of α-Fe in the α-Fe/Fe 3 O 4 nanocomposite is 35.6%. Th...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2013-02, Vol.42 (7), p.2572-2579 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A facile low-temperature hydrothermal process to synthesize α-Fe/Fe
3
O
4
nanocomposite is reported. TEM and HRTEM revealed that the α-Fe/Fe
3
O
4
nanocomposite was composed of catenulate α-Fe and lamellar structured Fe
3
O
4
. The weight ratio of α-Fe in the α-Fe/Fe
3
O
4
nanocomposite is 35.6%. The α-Fe/Fe
3
O
4
nanocomposite demonstrates an extremely high Congo red (CR) removal efficiency from waste water showing almost complete removal within 3 min. For 100 mg L
−1
of CR aqueous solution, the maximum CR removal can reach 1297.06 mg g
−1
. The large saturation magnetization (80.5 emu g
−1
) of the nanocomposite allows fast separation of α-Fe/Fe
3
O
4
nanoparticles loaded with CR from the liquid suspension. The synergistic effect of the nanocomposite may contribute to the enhanced CR removal ability, because the CR can be removed by reduction reaction and adsorption at the same time. Based on the degradation products identified by UV-Vis spectra, XRD and FTIR spectra, a possible degradation mechanism of CR on the α-Fe/Fe
3
O
4
composite was proposed. The significantly reduced treatment time required to remove the CR and the simple, low-cost and pollution-free preparation method make α-Fe/Fe
3
O
4
nanocomposite promising for highly efficient removal of dyes from waste water.
A facile low-temperature hydrothermal process to synthesize α-Fe/Fe
3
O
4
nanocomposite is reported. |
---|---|
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/c2dt32245e |