Proton conductivity of columnar ceria thin-films grown by chemical vapor deposition

Columnar thin films of undoped ceria were grown by metal-organic chemical vapor deposition. The films, deposited on Pt-coated MgO(100) substrates, display a columnar microstructure with nanometer scale grain size and ∼30% overall porosity. Through-plane (thickness mode) electrical conductivity was m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2013-01, Vol.15 (7), p.2466-2472
Hauptverfasser: Oh, Tae-Sik, Boyd, David A, Goodwin, David G, Haile, Sossina M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Columnar thin films of undoped ceria were grown by metal-organic chemical vapor deposition. The films, deposited on Pt-coated MgO(100) substrates, display a columnar microstructure with nanometer scale grain size and ∼30% overall porosity. Through-plane (thickness mode) electrical conductivity was measured by AC impedance spectroscopy. Proton conduction is observed below 350-400 °C, with a magnitude that depends on gas-phase water vapor pressure. The overall behavior suggests proton transport that occurs along exposed grain surfaces and parallel grain boundaries. No impedance due to grain boundaries normal to the direction of transport is observed. The proton conductivity in the temperature range of 200-400 °C is approximately four times greater than that of nanograined bulk ceria, consistent with enhanced transport along aligned grain surfaces in the CVD films. Protons move along exposed grain surfaces and parallel grain boundaries.
ISSN:1463-9076
1463-9084
DOI:10.1039/c2cp43036c