Folatereceptor targeted, carboxymethyl chitosan functionalized iron oxide nanoparticles: a novel ultradispersed nanoconjugates for bimodal imaging
This article delineates the design and synthesis of a novel, bio-functionalized, magneto-fluorescent multifunctional nanoparticles suitable for cancer-specific targeting, detection and imaging. Biocompatible, hydrophilic, magneto-fluorescent nanoparticles with surface-pendant amine, carboxyl and ald...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article delineates the design and synthesis of a novel, bio-functionalized, magneto-fluorescent multifunctional nanoparticles suitable for cancer-specific targeting, detection and imaging. Biocompatible, hydrophilic, magneto-fluorescent nanoparticles with surface-pendant amine, carboxyl and aldehyde groups were designed using o-carboxymethyl chitosan (OCMC). The free aminegroups of OCMC stabilized magnetite nanoparticles on the surface allow for the covalent attachment of a fluorescent dye such as rhodamine isothiocyanate (RITC) with the aim to develop a magneto-fluorescent nanoprobe for optical imaging. In order to impart specific cancer cell targeting properties, folic acid and its aminated derivative was conjugated onto these magneto-fluorescent nanoparticles using different pendant groups (-NH
2
, -COOH, -CHO). These newly synthesized iron-oxide folate nanoconjugates (FA-RITC-OCMC-SPIONs) showed excellent dispersibility, biocompatibility and good hydrodynamic sizes under physiological conditions which were extensively studied by a variety of complementary techniques. The cellular internalization efficacy of these folate-targeted and its non-targeted counterparts were studied using a folate-overexpressed (HeLa) and a normal (L929fibroblast) cells by fluorescence microscopy and magnetically activated cell sorting (MACS). Cell-uptake behaviors of nanoparticles clearly demonstrate that cancer cells over-expressing the human folatereceptor internalized a higher level of these nanoparticle-folate conjugates than normal cells. These folate targeted nanoparticles possess specific magnetic properties in the presence of an external magnetic field and the potential of these nanoconjugates as
T
2
-weighted negative contrast MR imaging agent were evaluated in folate-overexpressed HeLa and normal L929fibroblastcells.
A series of highly biocompatible, folate receptor targeted carboxymethyl chitosan functionalized iron oxide nanoparticles fabricated with various pendant groups for bimodal imaging. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c0nr00821d |