An investigation of the conductivity of peptide nanotube networks prepared by enzyme-triggered self-assemblyElectronic supplementary information (ESI) available: Fig. S1 to S4. See DOI: 10.1039/b9nr00233b

We demonstrate that nanotubular networks formed by enzyme-triggered self-assembly of Fmoc-L 3 (9-fluorenylmethoxycarbonyl-tri-leucine) show significant charge transport. FT-IR, fluorescence spectroscopy and wide angle X-ray scattering (WAXS) data confirm formation of β-sheets that are locked togethe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xu, Haixia, Das, Apurba K, Horie, Masaki, Shaik, Majeed S, Smith, Andrew M, Luo, Yi, Lu, Xiaofeng, Collins, Richard, Liem, Steven Y, Song, Aimin, Popelier, Paul L. A, Turner, Michael L, Xiao, Ping, Kinloch, Ian A, Ulijn, Rein V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate that nanotubular networks formed by enzyme-triggered self-assembly of Fmoc-L 3 (9-fluorenylmethoxycarbonyl-tri-leucine) show significant charge transport. FT-IR, fluorescence spectroscopy and wide angle X-ray scattering (WAXS) data confirm formation of β-sheets that are locked together via π-stacking interactions. Molecular dynamics simulations confirmed the π-π stacking distance between fluorenyl groups to be 3.6-3.8 Å. Impedance spectroscopy demonstrated that the nanotubular xerogel networks possess minimum sheet resistances of 0.1 MΩ/sq in air and 500 MΩ/sq in vacuum (pressure: 1.03 mbar) at room temperature, with the conductivity scaling linearly with the mass of peptide in the network. These materials may provide a platform to interface biological components with electronics. We demonstrate that nanotubular networks formed by enzyme-triggered self-assembly of Fmoc-L 3 (9-fluorenylmethoxycarbonyl-tri-leucine) show significant charge transport under vacuum conditions.
ISSN:2040-3364
2040-3372
DOI:10.1039/b9nr00233b