Structure and Organization of the Nervous System in the Actinotroch Larva of Phoronis Vancouverensis

The nervous system of the earliest functional stage of the actinotroch larva of Phoronis vancouverensis is described based on ultrastructural surveys and three-dimensional reconstructions, including serial reconstructions of selected parts of the system. The central element and main source of fibres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series B, Biological sciences Biological sciences, 1990-04, Vol.327 (1244), p.655-685
1. Verfasser: Lacalli, T. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nervous system of the earliest functional stage of the actinotroch larva of Phoronis vancouverensis is described based on ultrastructural surveys and three-dimensional reconstructions, including serial reconstructions of selected parts of the system. The central element and main source of fibres in the system is the apical organ. Nerve cell bodies were found here and in the surrounding apical epithelium, but nowhere else in the body. Given the limitations of the methods used, the presence of nerve cell bodies elsewhere in the body cannot be ruled out, but based on this work and a recent study by A. Hay-Schmidt of whole larvae, it seems unlikely they occur in any numbers. The larval nervous system is thus highly centralized, an advanced and rather specialized feature in comparison with some other larval types, specifically those of primitive spiralia and echinoderms, in which nerve cell bodies are more widely distributed in the larval epithelium. The largest single nerve in the body is the primary hood nerve, which runs around the pre-oral hood slightly back from its margin. The nerve is a compact, well-defined tract of approximately 40 fibres, with an investment of glial-like accessory cells. A second set of smaller, accessory nerves run parallel to the primary nerve between it and the hood margin. The hood nerves all join at the base of the hood on either side of the mouth to form a pair of adoral nerve centres. A number of small nerves cross the hood from the apical organ to the hood nerves. Three of these are large enough to be considered major nerves: one is medial and connects to the centre of the hood margin, the other two are dorsolateral and connect to the adoral nerve centres. Fibre tracings, which show the distribution of vesicle-filled terminals and varicosities, suggest the hood nerves are mainly involved in neuromuscular control, specifically, in lifting the hood. This involves the stimulation, in sequence, of the radial and circular hood muscles by the primary and accessory hood nerves, respectively. Cells at the hood margin are organized somewhat in the fashion of a conventional ciliary band, but there is no obvious morphological evidence that any of the hood nerves are involved in neurociliary control. A diffuse plexus of small nerves connects the above apical structures to the nerves supplying the tentacles. There are two main tentacle nerves, the primary tentacle nerve, which runs along the upper, oral margin of the tentacular ciliary
ISSN:0962-8436
0080-4622
1471-2970
2054-0280
DOI:10.1098/rstb.1990.0104