Bifurcation dynamics of natural drainage networks
As water erodes a landscape, streams form and channellize the surficial flow. In time, streams become highly ramified networks that can extend over a continent. Here, we combine physical reasoning, mathematical analysis and field observations to understand a basic feature of network growth: the bifu...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2013-12, Vol.371 (2004), p.1-21 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As water erodes a landscape, streams form and channellize the surficial flow. In time, streams become highly ramified networks that can extend over a continent. Here, we combine physical reasoning, mathematical analysis and field observations to understand a basic feature of network growth: the bifurcation of a growing stream. We suggest a deterministic bifurcation rule arising from a relationship between the position of the tip in the network and the local shape of the water table. Next, we show that, when a stream bifurcates, competition between the stream and branches selects a special bifurcation angle α=2π/5. We confirm this prediction by measuring several thousand bifurcation angles in a kilometre-scale network fed by groundwater. In addition to providing insight into the growth of river networks, this result presents river networks as a physical manifestation of a classical mathematical problem: interface growth in a harmonic field. In the final sections, we combine these results to develop and explore a one-parameter model of network growth. The model predicts the development of logarithmic spirals. We find similar features in the kilometre-scale network. |
---|---|
ISSN: | 1364-503X 1471-2962 |
DOI: | 10.1098/rsta.2012.0365 |