Ion Channels in Rabbit Cultured Fibroblasts

Large outward currents are recorded with the whole-cell patch-clamp technique on depolarization of rabbit cultured fibroblasts. Our findings suggest that these outward currents consist of two voltage-dependent components, one of which also depends on cytoplasmic calcium concentration. Total replacem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of London. Series B, Biological sciences Biological sciences, 1986-02, Vol.227 (1246), p.1-16
Hauptverfasser: Gray, P. T. A., Chiu, S. Y., Bevan, S., Ritchie, Joseph Murdoch
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large outward currents are recorded with the whole-cell patch-clamp technique on depolarization of rabbit cultured fibroblasts. Our findings suggest that these outward currents consist of two voltage-dependent components, one of which also depends on cytoplasmic calcium concentration. Total replacement of external Cl- by the large anion ascorbate does not affect the amplitude of the currents, indicating that both components must be carried by K+. Consistent with these findings with whole-cell currents, in single channel recordings from fibroblasts we found that most patches contain high-conductance potassium-selective channels whose activation depends on both membrane potential and the calcium concentration at the cytoplasmic surface of the membrane. In a smaller number of patches, a second population of high-conductance calcium-independent potassium channels is observed having different voltage-dependence. The calcium- and voltage-dependence suggest that these two channels correspond with the two components of outward current seen in the whole-cell recordings. The single channel conductance of both channels in symmetrical KCl (150 mM) is 260-270 pS. Both channels are highly selective for K+ over both Na+ and Cl-. The conductance of the channels when outward current is carried by Rb+ is considerably smaller than when it is carried by K+. Some evidence is adduced to support the hypothesis that these potassium channel populations may be involved in the control of cell proliferation.
ISSN:0962-8452
0080-4649
0950-1193
1471-2954
2053-9193
DOI:10.1098/rspb.1986.0005