Dynamical emergence of Markovianity in local time scheme

Recently we pointed out the so-called local time scheme as a novel approach to quantum foundations that solves the preferred pointer-basis problem. In this paper, we introduce and analyse in depth a rather non-standard dynamical map that is imposed by the scheme. On the one hand, the map does not al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2016-06, Vol.472 (2190), p.20160041-20160041
Hauptverfasser: Jeknić-Dugić, J., Arsenijević, M., Dugić, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20160041
container_issue 2190
container_start_page 20160041
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 472
creator Jeknić-Dugić, J.
Arsenijević, M.
Dugić, M.
description Recently we pointed out the so-called local time scheme as a novel approach to quantum foundations that solves the preferred pointer-basis problem. In this paper, we introduce and analyse in depth a rather non-standard dynamical map that is imposed by the scheme. On the one hand, the map does not allow for introducing a properly defined generator of the evolution nor does it represent a quantum channel. On the other hand, the map is linear, positive, trace preserving and unital as well as completely positive, but is not divisible and therefore non-Markovian. Nevertheless, we provide quantitative criteria for dynamical emergence of time-coarse-grained Markovianity, for exact dynamics of an open system, as well as for operationally defined approximation of a closed or open many-particle system. A closed system never reaches a steady state, whereas an open system may reach a unique steady state given by the Lüders–von Neumann formula; where the smaller the open system, the faster a steady state is attained. These generic findings extend the standard open quantum systems theory and substantially tackle certain cosmological issues.
doi_str_mv 10.1098/rspa.2016.0041
format Article
fullrecord <record><control><sourceid>proquest_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rspa_2016_0041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826729953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-12cfe44241ddbdade03b0e07a456bb5aeeb13d7db72b3770c9af2799a24109eb3</originalsourceid><addsrcrecordid>eNp9kEtv1TAQRi0EoqWwZYmyZJPL-BXHG6SqPKWiVjzWluNMWrdJfLGTK4Vfj9NbKopEV7Y15ztjfYS8pLChoOs3MW3thgGtNgCCPiKHVChaMi2qx_nOK1FKYPSAPEvpCgC0rNVTcsCU4JVW_JDU75bRDt7ZvsAB4wWODovQFV9svA47b0c_LYUfiz6syOQHLJK7zOhz8qSzfcIXt-cR-fHh_feTT-Xp2cfPJ8enpZNcTCVlrkMhmKBt27S2ReANICgrZNU00iI2lLeqbRRruFLgtO2Y0trmBGhs-BF5u_du52bA1uE4RdubbfSDjYsJ1pv7k9FfmouwM0JLoLrOgte3ghh-zpgmM_jksO_tiGFOhtasUkxryTO62aMuhpQidndrKJi1brPWbda6zVp3Drz6-3N3-J9-M8D3QAxLbik4j9NirsIcx_z8v_b6odTXb-fHO6GYZ1SDgZpTkEIKZX757V6Vh8anNKO5Qe7r_932G7VCsUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826729953</pqid></control><display><type>article</type><title>Dynamical emergence of Markovianity in local time scheme</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><creator>Jeknić-Dugić, J. ; Arsenijević, M. ; Dugić, M.</creator><creatorcontrib>Jeknić-Dugić, J. ; Arsenijević, M. ; Dugić, M.</creatorcontrib><description>Recently we pointed out the so-called local time scheme as a novel approach to quantum foundations that solves the preferred pointer-basis problem. In this paper, we introduce and analyse in depth a rather non-standard dynamical map that is imposed by the scheme. On the one hand, the map does not allow for introducing a properly defined generator of the evolution nor does it represent a quantum channel. On the other hand, the map is linear, positive, trace preserving and unital as well as completely positive, but is not divisible and therefore non-Markovian. Nevertheless, we provide quantitative criteria for dynamical emergence of time-coarse-grained Markovianity, for exact dynamics of an open system, as well as for operationally defined approximation of a closed or open many-particle system. A closed system never reaches a steady state, whereas an open system may reach a unique steady state given by the Lüders–von Neumann formula; where the smaller the open system, the faster a steady state is attained. These generic findings extend the standard open quantum systems theory and substantially tackle certain cosmological issues.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2016.0041</identifier><identifier>PMID: 27436973</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Local Time ; Markovian Processes ; Quantum Dynamical Maps</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2016-06, Vol.472 (2190), p.20160041-20160041</ispartof><rights>2016 The Author(s)</rights><rights>2016 The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-12cfe44241ddbdade03b0e07a456bb5aeeb13d7db72b3770c9af2799a24109eb3</citedby><cites>FETCH-LOGICAL-c534t-12cfe44241ddbdade03b0e07a456bb5aeeb13d7db72b3770c9af2799a24109eb3</cites><orcidid>0000-0003-4622-642X ; 0000-0002-4905-6457 ; 0000-0002-4493-6009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27436973$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeknić-Dugić, J.</creatorcontrib><creatorcontrib>Arsenijević, M.</creatorcontrib><creatorcontrib>Dugić, M.</creatorcontrib><title>Dynamical emergence of Markovianity in local time scheme</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc Math Phys Eng Sci</addtitle><description>Recently we pointed out the so-called local time scheme as a novel approach to quantum foundations that solves the preferred pointer-basis problem. In this paper, we introduce and analyse in depth a rather non-standard dynamical map that is imposed by the scheme. On the one hand, the map does not allow for introducing a properly defined generator of the evolution nor does it represent a quantum channel. On the other hand, the map is linear, positive, trace preserving and unital as well as completely positive, but is not divisible and therefore non-Markovian. Nevertheless, we provide quantitative criteria for dynamical emergence of time-coarse-grained Markovianity, for exact dynamics of an open system, as well as for operationally defined approximation of a closed or open many-particle system. A closed system never reaches a steady state, whereas an open system may reach a unique steady state given by the Lüders–von Neumann formula; where the smaller the open system, the faster a steady state is attained. These generic findings extend the standard open quantum systems theory and substantially tackle certain cosmological issues.</description><subject>Local Time</subject><subject>Markovian Processes</subject><subject>Quantum Dynamical Maps</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtv1TAQRi0EoqWwZYmyZJPL-BXHG6SqPKWiVjzWluNMWrdJfLGTK4Vfj9NbKopEV7Y15ztjfYS8pLChoOs3MW3thgGtNgCCPiKHVChaMi2qx_nOK1FKYPSAPEvpCgC0rNVTcsCU4JVW_JDU75bRDt7ZvsAB4wWODovQFV9svA47b0c_LYUfiz6syOQHLJK7zOhz8qSzfcIXt-cR-fHh_feTT-Xp2cfPJ8enpZNcTCVlrkMhmKBt27S2ReANICgrZNU00iI2lLeqbRRruFLgtO2Y0trmBGhs-BF5u_du52bA1uE4RdubbfSDjYsJ1pv7k9FfmouwM0JLoLrOgte3ghh-zpgmM_jksO_tiGFOhtasUkxryTO62aMuhpQidndrKJi1brPWbda6zVp3Drz6-3N3-J9-M8D3QAxLbik4j9NirsIcx_z8v_b6odTXb-fHO6GYZ1SDgZpTkEIKZX757V6Vh8anNKO5Qe7r_932G7VCsUA</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Jeknić-Dugić, J.</creator><creator>Arsenijević, M.</creator><creator>Dugić, M.</creator><general>The Royal Society Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4622-642X</orcidid><orcidid>https://orcid.org/0000-0002-4905-6457</orcidid><orcidid>https://orcid.org/0000-0002-4493-6009</orcidid></search><sort><creationdate>20160601</creationdate><title>Dynamical emergence of Markovianity in local time scheme</title><author>Jeknić-Dugić, J. ; Arsenijević, M. ; Dugić, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-12cfe44241ddbdade03b0e07a456bb5aeeb13d7db72b3770c9af2799a24109eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Local Time</topic><topic>Markovian Processes</topic><topic>Quantum Dynamical Maps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeknić-Dugić, J.</creatorcontrib><creatorcontrib>Arsenijević, M.</creatorcontrib><creatorcontrib>Dugić, M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeknić-Dugić, J.</au><au>Arsenijević, M.</au><au>Dugić, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical emergence of Markovianity in local time scheme</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc Math Phys Eng Sci</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>472</volume><issue>2190</issue><spage>20160041</spage><epage>20160041</epage><pages>20160041-20160041</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>Recently we pointed out the so-called local time scheme as a novel approach to quantum foundations that solves the preferred pointer-basis problem. In this paper, we introduce and analyse in depth a rather non-standard dynamical map that is imposed by the scheme. On the one hand, the map does not allow for introducing a properly defined generator of the evolution nor does it represent a quantum channel. On the other hand, the map is linear, positive, trace preserving and unital as well as completely positive, but is not divisible and therefore non-Markovian. Nevertheless, we provide quantitative criteria for dynamical emergence of time-coarse-grained Markovianity, for exact dynamics of an open system, as well as for operationally defined approximation of a closed or open many-particle system. A closed system never reaches a steady state, whereas an open system may reach a unique steady state given by the Lüders–von Neumann formula; where the smaller the open system, the faster a steady state is attained. These generic findings extend the standard open quantum systems theory and substantially tackle certain cosmological issues.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>27436973</pmid><doi>10.1098/rspa.2016.0041</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4622-642X</orcidid><orcidid>https://orcid.org/0000-0002-4905-6457</orcidid><orcidid>https://orcid.org/0000-0002-4493-6009</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2016-06, Vol.472 (2190), p.20160041-20160041
issn 1364-5021
1471-2946
language eng
recordid cdi_royalsociety_journals_10_1098_rspa_2016_0041
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; Alma/SFX Local Collection
subjects Local Time
Markovian Processes
Quantum Dynamical Maps
title Dynamical emergence of Markovianity in local time scheme
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20emergence%20of%20Markovianity%20in%20local%20time%20scheme&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Jekni%C4%87-Dugi%C4%87,%20J.&rft.date=2016-06-01&rft.volume=472&rft.issue=2190&rft.spage=20160041&rft.epage=20160041&rft.pages=20160041-20160041&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2016.0041&rft_dat=%3Cproquest_royal%3E1826729953%3C/proquest_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826729953&rft_id=info:pmid/27436973&rfr_iscdi=true