Dynamical emergence of Markovianity in local time scheme
Recently we pointed out the so-called local time scheme as a novel approach to quantum foundations that solves the preferred pointer-basis problem. In this paper, we introduce and analyse in depth a rather non-standard dynamical map that is imposed by the scheme. On the one hand, the map does not al...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2016-06, Vol.472 (2190), p.20160041-20160041 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently we pointed out the so-called local time scheme as a novel approach to quantum foundations that solves the preferred pointer-basis problem. In this paper, we introduce and analyse in depth a rather non-standard dynamical map that is imposed by the scheme. On the one hand, the map does not allow for introducing a properly defined generator of the evolution nor does it represent a quantum channel. On the other hand, the map is linear, positive, trace preserving and unital as well as completely positive, but is not divisible and therefore non-Markovian. Nevertheless, we provide quantitative criteria for dynamical emergence of time-coarse-grained Markovianity, for exact dynamics of an open system, as well as for operationally defined approximation of a closed or open many-particle system. A closed system never reaches a steady state, whereas an open system may reach a unique steady state given by the Lüders–von Neumann formula; where the smaller the open system, the faster a steady state is attained. These generic findings extend the standard open quantum systems theory and substantially tackle certain cosmological issues. |
---|---|
ISSN: | 1364-5021 1471-2946 |
DOI: | 10.1098/rspa.2016.0041 |