Tin-containing silicates: structure-activity relations

The selective conversion of biomass-derived substrates is one of the major challenges facing the chemical industry. Recently, stannosilicates have been employed as highly active and selective Lewis acid catalysts for a number of industrially relevant reactions. In the present work, four different st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2012-07, Vol.468 (2143), p.2000-2016
Hauptverfasser: Osmundsen, Christian M., Holm, Martin Spangsberg, Dahl, Søren, Taarning, Esben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2016
container_issue 2143
container_start_page 2000
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 468
creator Osmundsen, Christian M.
Holm, Martin Spangsberg
Dahl, Søren
Taarning, Esben
description The selective conversion of biomass-derived substrates is one of the major challenges facing the chemical industry. Recently, stannosilicates have been employed as highly active and selective Lewis acid catalysts for a number of industrially relevant reactions. In the present work, four different stannosilicates have been investigated: Sn-BEA, Sn-MFI, Sn-MCM-41 and Sn-SBA-15. When comparing the properties of tin sites in the structures, substantial differences are observed. Sn-beta displays the highest Lewis acid strength, as measured by probe molecule studies using infrared spectroscopy, which gives it a significantly higher activity at low temperatures than the other structures investigated. Furthermore, the increased acid strength translates into large differences in selectivity between the catalysts, thus demonstrating the influence of the structure on the active site, and pointing the way forward for tailoring the active site to the desired reaction.
doi_str_mv 10.1098/rspa.2012.0047
format Article
fullrecord <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rspa_2012_0047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41511124</jstor_id><sourcerecordid>41511124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c582t-972cd5870c39d550d2ae1cadab1b758bd0cc8579b30e4effe59ca6ac6ffbc51a3</originalsourceid><addsrcrecordid>eNp9UElv1DAYjRBIlMKVG9IcuWTqfeFWjVgqlX3o9ZPjOMjTNB78ORXDr8dDUCWE4GRbb_N7TfOUkjUl1pxl3Ls1I5StCRH6XnNChaYts0Ldr3euRCsJow-bR4g7QoiVRp80ahun1qepuDjF6esK4xi9KwFfrLDk2Zc5h9b5Em9jOaxyGF2JacLHzYPBjRie_D5Pmy-vXm43b9rL968vNueXrZeGldZq5vuaQzy3vZSkZy5Q73rX0U5L0_XEeyO17TgJIgxDkNY75bwahs5L6vhp83zx3ef0bQ5Y4CaiD-PoppBmBKpULSskl5W6Xqg-J8QcBtjneOPyASiB40BwHAiOA8FxoCq4XgQ5HWqH5GMoB9ilOU_1CZ8-fzi_FcpERgUHYjglWlhu4UfcL1YVhIg4B_hF-dP-7zT-v7R__vHZotphSfmukaCSUspExdsFj1jC9zvc5WtQmmsJV0bAW_Pu49WWbEDyn2mtp7M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660044535</pqid></control><display><type>article</type><title>Tin-containing silicates: structure-activity relations</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><creator>Osmundsen, Christian M. ; Holm, Martin Spangsberg ; Dahl, Søren ; Taarning, Esben</creator><creatorcontrib>Osmundsen, Christian M. ; Holm, Martin Spangsberg ; Dahl, Søren ; Taarning, Esben</creatorcontrib><description>The selective conversion of biomass-derived substrates is one of the major challenges facing the chemical industry. Recently, stannosilicates have been employed as highly active and selective Lewis acid catalysts for a number of industrially relevant reactions. In the present work, four different stannosilicates have been investigated: Sn-BEA, Sn-MFI, Sn-MCM-41 and Sn-SBA-15. When comparing the properties of tin sites in the structures, substantial differences are observed. Sn-beta displays the highest Lewis acid strength, as measured by probe molecule studies using infrared spectroscopy, which gives it a significantly higher activity at low temperatures than the other structures investigated. Furthermore, the increased acid strength translates into large differences in selectivity between the catalysts, thus demonstrating the influence of the structure on the active site, and pointing the way forward for tailoring the active site to the desired reaction.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2012.0047</identifier><language>eng</language><publisher>The Royal Society Publishing</publisher><subject>Active sites ; Atoms ; Biomass ; Catalysis ; Catalysts ; Displays ; Infrared ; Infrared spectroscopy ; Isomerization ; Lactates ; Lewis acid ; Lewis acids ; Silicates ; Special Feature ; Stannosilicate ; Strength ; Tin ; Trioses ; Zeolite ; Zeolites</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2012-07, Vol.468 (2143), p.2000-2016</ispartof><rights>2012 The Royal Society</rights><rights>This journal is © 2012 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c582t-972cd5870c39d550d2ae1cadab1b758bd0cc8579b30e4effe59ca6ac6ffbc51a3</citedby><cites>FETCH-LOGICAL-c582t-972cd5870c39d550d2ae1cadab1b758bd0cc8579b30e4effe59ca6ac6ffbc51a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41511124$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41511124$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Osmundsen, Christian M.</creatorcontrib><creatorcontrib>Holm, Martin Spangsberg</creatorcontrib><creatorcontrib>Dahl, Søren</creatorcontrib><creatorcontrib>Taarning, Esben</creatorcontrib><title>Tin-containing silicates: structure-activity relations</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc. R. Soc. A</addtitle><description>The selective conversion of biomass-derived substrates is one of the major challenges facing the chemical industry. Recently, stannosilicates have been employed as highly active and selective Lewis acid catalysts for a number of industrially relevant reactions. In the present work, four different stannosilicates have been investigated: Sn-BEA, Sn-MFI, Sn-MCM-41 and Sn-SBA-15. When comparing the properties of tin sites in the structures, substantial differences are observed. Sn-beta displays the highest Lewis acid strength, as measured by probe molecule studies using infrared spectroscopy, which gives it a significantly higher activity at low temperatures than the other structures investigated. Furthermore, the increased acid strength translates into large differences in selectivity between the catalysts, thus demonstrating the influence of the structure on the active site, and pointing the way forward for tailoring the active site to the desired reaction.</description><subject>Active sites</subject><subject>Atoms</subject><subject>Biomass</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Displays</subject><subject>Infrared</subject><subject>Infrared spectroscopy</subject><subject>Isomerization</subject><subject>Lactates</subject><subject>Lewis acid</subject><subject>Lewis acids</subject><subject>Silicates</subject><subject>Special Feature</subject><subject>Stannosilicate</subject><subject>Strength</subject><subject>Tin</subject><subject>Trioses</subject><subject>Zeolite</subject><subject>Zeolites</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9UElv1DAYjRBIlMKVG9IcuWTqfeFWjVgqlX3o9ZPjOMjTNB78ORXDr8dDUCWE4GRbb_N7TfOUkjUl1pxl3Ls1I5StCRH6XnNChaYts0Ldr3euRCsJow-bR4g7QoiVRp80ahun1qepuDjF6esK4xi9KwFfrLDk2Zc5h9b5Em9jOaxyGF2JacLHzYPBjRie_D5Pmy-vXm43b9rL968vNueXrZeGldZq5vuaQzy3vZSkZy5Q73rX0U5L0_XEeyO17TgJIgxDkNY75bwahs5L6vhp83zx3ef0bQ5Y4CaiD-PoppBmBKpULSskl5W6Xqg-J8QcBtjneOPyASiB40BwHAiOA8FxoCq4XgQ5HWqH5GMoB9ilOU_1CZ8-fzi_FcpERgUHYjglWlhu4UfcL1YVhIg4B_hF-dP-7zT-v7R__vHZotphSfmukaCSUspExdsFj1jC9zvc5WtQmmsJV0bAW_Pu49WWbEDyn2mtp7M</recordid><startdate>20120708</startdate><enddate>20120708</enddate><creator>Osmundsen, Christian M.</creator><creator>Holm, Martin Spangsberg</creator><creator>Dahl, Søren</creator><creator>Taarning, Esben</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120708</creationdate><title>Tin-containing silicates: structure-activity relations</title><author>Osmundsen, Christian M. ; Holm, Martin Spangsberg ; Dahl, Søren ; Taarning, Esben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c582t-972cd5870c39d550d2ae1cadab1b758bd0cc8579b30e4effe59ca6ac6ffbc51a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Active sites</topic><topic>Atoms</topic><topic>Biomass</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Displays</topic><topic>Infrared</topic><topic>Infrared spectroscopy</topic><topic>Isomerization</topic><topic>Lactates</topic><topic>Lewis acid</topic><topic>Lewis acids</topic><topic>Silicates</topic><topic>Special Feature</topic><topic>Stannosilicate</topic><topic>Strength</topic><topic>Tin</topic><topic>Trioses</topic><topic>Zeolite</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osmundsen, Christian M.</creatorcontrib><creatorcontrib>Holm, Martin Spangsberg</creatorcontrib><creatorcontrib>Dahl, Søren</creatorcontrib><creatorcontrib>Taarning, Esben</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osmundsen, Christian M.</au><au>Holm, Martin Spangsberg</au><au>Dahl, Søren</au><au>Taarning, Esben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tin-containing silicates: structure-activity relations</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc. R. Soc. A</addtitle><date>2012-07-08</date><risdate>2012</risdate><volume>468</volume><issue>2143</issue><spage>2000</spage><epage>2016</epage><pages>2000-2016</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>The selective conversion of biomass-derived substrates is one of the major challenges facing the chemical industry. Recently, stannosilicates have been employed as highly active and selective Lewis acid catalysts for a number of industrially relevant reactions. In the present work, four different stannosilicates have been investigated: Sn-BEA, Sn-MFI, Sn-MCM-41 and Sn-SBA-15. When comparing the properties of tin sites in the structures, substantial differences are observed. Sn-beta displays the highest Lewis acid strength, as measured by probe molecule studies using infrared spectroscopy, which gives it a significantly higher activity at low temperatures than the other structures investigated. Furthermore, the increased acid strength translates into large differences in selectivity between the catalysts, thus demonstrating the influence of the structure on the active site, and pointing the way forward for tailoring the active site to the desired reaction.</abstract><pub>The Royal Society Publishing</pub><doi>10.1098/rspa.2012.0047</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2012-07, Vol.468 (2143), p.2000-2016
issn 1364-5021
1471-2946
language eng
recordid cdi_royalsociety_journals_10_1098_rspa_2012_0047
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; Alma/SFX Local Collection
subjects Active sites
Atoms
Biomass
Catalysis
Catalysts
Displays
Infrared
Infrared spectroscopy
Isomerization
Lactates
Lewis acid
Lewis acids
Silicates
Special Feature
Stannosilicate
Strength
Tin
Trioses
Zeolite
Zeolites
title Tin-containing silicates: structure-activity relations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A12%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tin-containing%20silicates:%20structure-activity%20relations&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Osmundsen,%20Christian%20M.&rft.date=2012-07-08&rft.volume=468&rft.issue=2143&rft.spage=2000&rft.epage=2016&rft.pages=2000-2016&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2012.0047&rft_dat=%3Cjstor_royal%3E41511124%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660044535&rft_id=info:pmid/&rft_jstor_id=41511124&rfr_iscdi=true