Tin-containing silicates: structure-activity relations
The selective conversion of biomass-derived substrates is one of the major challenges facing the chemical industry. Recently, stannosilicates have been employed as highly active and selective Lewis acid catalysts for a number of industrially relevant reactions. In the present work, four different st...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2012-07, Vol.468 (2143), p.2000-2016 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2016 |
---|---|
container_issue | 2143 |
container_start_page | 2000 |
container_title | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
container_volume | 468 |
creator | Osmundsen, Christian M. Holm, Martin Spangsberg Dahl, Søren Taarning, Esben |
description | The selective conversion of biomass-derived substrates is one of the major challenges facing the chemical industry. Recently, stannosilicates have been employed as highly active and selective Lewis acid catalysts for a number of industrially relevant reactions. In the present work, four different stannosilicates have been investigated: Sn-BEA, Sn-MFI, Sn-MCM-41 and Sn-SBA-15. When comparing the properties of tin sites in the structures, substantial differences are observed. Sn-beta displays the highest Lewis acid strength, as measured by probe molecule studies using infrared spectroscopy, which gives it a significantly higher activity at low temperatures than the other structures investigated. Furthermore, the increased acid strength translates into large differences in selectivity between the catalysts, thus demonstrating the influence of the structure on the active site, and pointing the way forward for tailoring the active site to the desired reaction. |
doi_str_mv | 10.1098/rspa.2012.0047 |
format | Article |
fullrecord | <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rspa_2012_0047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41511124</jstor_id><sourcerecordid>41511124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c582t-972cd5870c39d550d2ae1cadab1b758bd0cc8579b30e4effe59ca6ac6ffbc51a3</originalsourceid><addsrcrecordid>eNp9UElv1DAYjRBIlMKVG9IcuWTqfeFWjVgqlX3o9ZPjOMjTNB78ORXDr8dDUCWE4GRbb_N7TfOUkjUl1pxl3Ls1I5StCRH6XnNChaYts0Ldr3euRCsJow-bR4g7QoiVRp80ahun1qepuDjF6esK4xi9KwFfrLDk2Zc5h9b5Em9jOaxyGF2JacLHzYPBjRie_D5Pmy-vXm43b9rL968vNueXrZeGldZq5vuaQzy3vZSkZy5Q73rX0U5L0_XEeyO17TgJIgxDkNY75bwahs5L6vhp83zx3ef0bQ5Y4CaiD-PoppBmBKpULSskl5W6Xqg-J8QcBtjneOPyASiB40BwHAiOA8FxoCq4XgQ5HWqH5GMoB9ilOU_1CZ8-fzi_FcpERgUHYjglWlhu4UfcL1YVhIg4B_hF-dP-7zT-v7R__vHZotphSfmukaCSUspExdsFj1jC9zvc5WtQmmsJV0bAW_Pu49WWbEDyn2mtp7M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660044535</pqid></control><display><type>article</type><title>Tin-containing silicates: structure-activity relations</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><creator>Osmundsen, Christian M. ; Holm, Martin Spangsberg ; Dahl, Søren ; Taarning, Esben</creator><creatorcontrib>Osmundsen, Christian M. ; Holm, Martin Spangsberg ; Dahl, Søren ; Taarning, Esben</creatorcontrib><description>The selective conversion of biomass-derived substrates is one of the major challenges facing the chemical industry. Recently, stannosilicates have been employed as highly active and selective Lewis acid catalysts for a number of industrially relevant reactions. In the present work, four different stannosilicates have been investigated: Sn-BEA, Sn-MFI, Sn-MCM-41 and Sn-SBA-15. When comparing the properties of tin sites in the structures, substantial differences are observed. Sn-beta displays the highest Lewis acid strength, as measured by probe molecule studies using infrared spectroscopy, which gives it a significantly higher activity at low temperatures than the other structures investigated. Furthermore, the increased acid strength translates into large differences in selectivity between the catalysts, thus demonstrating the influence of the structure on the active site, and pointing the way forward for tailoring the active site to the desired reaction.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2012.0047</identifier><language>eng</language><publisher>The Royal Society Publishing</publisher><subject>Active sites ; Atoms ; Biomass ; Catalysis ; Catalysts ; Displays ; Infrared ; Infrared spectroscopy ; Isomerization ; Lactates ; Lewis acid ; Lewis acids ; Silicates ; Special Feature ; Stannosilicate ; Strength ; Tin ; Trioses ; Zeolite ; Zeolites</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2012-07, Vol.468 (2143), p.2000-2016</ispartof><rights>2012 The Royal Society</rights><rights>This journal is © 2012 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c582t-972cd5870c39d550d2ae1cadab1b758bd0cc8579b30e4effe59ca6ac6ffbc51a3</citedby><cites>FETCH-LOGICAL-c582t-972cd5870c39d550d2ae1cadab1b758bd0cc8579b30e4effe59ca6ac6ffbc51a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41511124$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41511124$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Osmundsen, Christian M.</creatorcontrib><creatorcontrib>Holm, Martin Spangsberg</creatorcontrib><creatorcontrib>Dahl, Søren</creatorcontrib><creatorcontrib>Taarning, Esben</creatorcontrib><title>Tin-containing silicates: structure-activity relations</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc. R. Soc. A</addtitle><description>The selective conversion of biomass-derived substrates is one of the major challenges facing the chemical industry. Recently, stannosilicates have been employed as highly active and selective Lewis acid catalysts for a number of industrially relevant reactions. In the present work, four different stannosilicates have been investigated: Sn-BEA, Sn-MFI, Sn-MCM-41 and Sn-SBA-15. When comparing the properties of tin sites in the structures, substantial differences are observed. Sn-beta displays the highest Lewis acid strength, as measured by probe molecule studies using infrared spectroscopy, which gives it a significantly higher activity at low temperatures than the other structures investigated. Furthermore, the increased acid strength translates into large differences in selectivity between the catalysts, thus demonstrating the influence of the structure on the active site, and pointing the way forward for tailoring the active site to the desired reaction.</description><subject>Active sites</subject><subject>Atoms</subject><subject>Biomass</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Displays</subject><subject>Infrared</subject><subject>Infrared spectroscopy</subject><subject>Isomerization</subject><subject>Lactates</subject><subject>Lewis acid</subject><subject>Lewis acids</subject><subject>Silicates</subject><subject>Special Feature</subject><subject>Stannosilicate</subject><subject>Strength</subject><subject>Tin</subject><subject>Trioses</subject><subject>Zeolite</subject><subject>Zeolites</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9UElv1DAYjRBIlMKVG9IcuWTqfeFWjVgqlX3o9ZPjOMjTNB78ORXDr8dDUCWE4GRbb_N7TfOUkjUl1pxl3Ls1I5StCRH6XnNChaYts0Ldr3euRCsJow-bR4g7QoiVRp80ahun1qepuDjF6esK4xi9KwFfrLDk2Zc5h9b5Em9jOaxyGF2JacLHzYPBjRie_D5Pmy-vXm43b9rL968vNueXrZeGldZq5vuaQzy3vZSkZy5Q73rX0U5L0_XEeyO17TgJIgxDkNY75bwahs5L6vhp83zx3ef0bQ5Y4CaiD-PoppBmBKpULSskl5W6Xqg-J8QcBtjneOPyASiB40BwHAiOA8FxoCq4XgQ5HWqH5GMoB9ilOU_1CZ8-fzi_FcpERgUHYjglWlhu4UfcL1YVhIg4B_hF-dP-7zT-v7R__vHZotphSfmukaCSUspExdsFj1jC9zvc5WtQmmsJV0bAW_Pu49WWbEDyn2mtp7M</recordid><startdate>20120708</startdate><enddate>20120708</enddate><creator>Osmundsen, Christian M.</creator><creator>Holm, Martin Spangsberg</creator><creator>Dahl, Søren</creator><creator>Taarning, Esben</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120708</creationdate><title>Tin-containing silicates: structure-activity relations</title><author>Osmundsen, Christian M. ; Holm, Martin Spangsberg ; Dahl, Søren ; Taarning, Esben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c582t-972cd5870c39d550d2ae1cadab1b758bd0cc8579b30e4effe59ca6ac6ffbc51a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Active sites</topic><topic>Atoms</topic><topic>Biomass</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Displays</topic><topic>Infrared</topic><topic>Infrared spectroscopy</topic><topic>Isomerization</topic><topic>Lactates</topic><topic>Lewis acid</topic><topic>Lewis acids</topic><topic>Silicates</topic><topic>Special Feature</topic><topic>Stannosilicate</topic><topic>Strength</topic><topic>Tin</topic><topic>Trioses</topic><topic>Zeolite</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osmundsen, Christian M.</creatorcontrib><creatorcontrib>Holm, Martin Spangsberg</creatorcontrib><creatorcontrib>Dahl, Søren</creatorcontrib><creatorcontrib>Taarning, Esben</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osmundsen, Christian M.</au><au>Holm, Martin Spangsberg</au><au>Dahl, Søren</au><au>Taarning, Esben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tin-containing silicates: structure-activity relations</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc. R. Soc. A</addtitle><date>2012-07-08</date><risdate>2012</risdate><volume>468</volume><issue>2143</issue><spage>2000</spage><epage>2016</epage><pages>2000-2016</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>The selective conversion of biomass-derived substrates is one of the major challenges facing the chemical industry. Recently, stannosilicates have been employed as highly active and selective Lewis acid catalysts for a number of industrially relevant reactions. In the present work, four different stannosilicates have been investigated: Sn-BEA, Sn-MFI, Sn-MCM-41 and Sn-SBA-15. When comparing the properties of tin sites in the structures, substantial differences are observed. Sn-beta displays the highest Lewis acid strength, as measured by probe molecule studies using infrared spectroscopy, which gives it a significantly higher activity at low temperatures than the other structures investigated. Furthermore, the increased acid strength translates into large differences in selectivity between the catalysts, thus demonstrating the influence of the structure on the active site, and pointing the way forward for tailoring the active site to the desired reaction.</abstract><pub>The Royal Society Publishing</pub><doi>10.1098/rspa.2012.0047</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2012-07, Vol.468 (2143), p.2000-2016 |
issn | 1364-5021 1471-2946 |
language | eng |
recordid | cdi_royalsociety_journals_10_1098_rspa_2012_0047 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy; Alma/SFX Local Collection |
subjects | Active sites Atoms Biomass Catalysis Catalysts Displays Infrared Infrared spectroscopy Isomerization Lactates Lewis acid Lewis acids Silicates Special Feature Stannosilicate Strength Tin Trioses Zeolite Zeolites |
title | Tin-containing silicates: structure-activity relations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A12%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tin-containing%20silicates:%20structure-activity%20relations&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Osmundsen,%20Christian%20M.&rft.date=2012-07-08&rft.volume=468&rft.issue=2143&rft.spage=2000&rft.epage=2016&rft.pages=2000-2016&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2012.0047&rft_dat=%3Cjstor_royal%3E41511124%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660044535&rft_id=info:pmid/&rft_jstor_id=41511124&rfr_iscdi=true |