Tin-containing silicates: structure-activity relations

The selective conversion of biomass-derived substrates is one of the major challenges facing the chemical industry. Recently, stannosilicates have been employed as highly active and selective Lewis acid catalysts for a number of industrially relevant reactions. In the present work, four different st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2012-07, Vol.468 (2143), p.2000-2016
Hauptverfasser: Osmundsen, Christian M., Holm, Martin Spangsberg, Dahl, Søren, Taarning, Esben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The selective conversion of biomass-derived substrates is one of the major challenges facing the chemical industry. Recently, stannosilicates have been employed as highly active and selective Lewis acid catalysts for a number of industrially relevant reactions. In the present work, four different stannosilicates have been investigated: Sn-BEA, Sn-MFI, Sn-MCM-41 and Sn-SBA-15. When comparing the properties of tin sites in the structures, substantial differences are observed. Sn-beta displays the highest Lewis acid strength, as measured by probe molecule studies using infrared spectroscopy, which gives it a significantly higher activity at low temperatures than the other structures investigated. Furthermore, the increased acid strength translates into large differences in selectivity between the catalysts, thus demonstrating the influence of the structure on the active site, and pointing the way forward for tailoring the active site to the desired reaction.
ISSN:1364-5021
1471-2946
DOI:10.1098/rspa.2012.0047