Diffraction by an elastic wedge with stress-free boundary: existence and uniqueness

Applying the spectral function techniques, developed by Croisille and Lebeau, we prove the existence of solutions to problems of plane and cylindrical waves diffraction by an elastic wedge with stress-free boundary conditions. We also formulate radiation conditions, under which the uniqueness holds....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2006-01, Vol.462 (2065), p.289-317
Hauptverfasser: Kamotski, Vladimir V, Lebeau, Gilles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Applying the spectral function techniques, developed by Croisille and Lebeau, we prove the existence of solutions to problems of plane and cylindrical waves diffraction by an elastic wedge with stress-free boundary conditions. We also formulate radiation conditions, under which the uniqueness holds. The latter implies absolute continuity of the spectrum of the Lamé operator in a wedge domain with stress-free boundary.
ISSN:1364-5021
1471-2946
DOI:10.1098/rspa.2005.1564