Trapped modes in curved elastic plates

We investigate the existence of trapped modes in elastic plates of constant thickness, which possess bends of arbitrary curvature and flatten out at infinity; such trapped modes consist of finite energy localized in regions of maximal curvature. We present both an asymptotic model and numerical evid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2005-04, Vol.461 (2056), p.1181-1197
Hauptverfasser: Gridin, Dmitri, Craster, Richard V, Adamou, Alexander T.I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the existence of trapped modes in elastic plates of constant thickness, which possess bends of arbitrary curvature and flatten out at infinity; such trapped modes consist of finite energy localized in regions of maximal curvature. We present both an asymptotic model and numerical evidence to demonstrate the trapping. In the asymptotic analysis we utilize a dimensionless curvature as a small parameter, whereas the numerical model is based on spectral methods and is free of the small-curvature limitation. The two models agree with each other well in the region where both are applicable. Simple existence conditions depending on Poison's ratio are offered, and finally, the effect of energy build-up in a bend when the structure is excited at a resonant frequency is demonstrated.
ISSN:1364-5021
1471-2946
DOI:10.1098/rspa.2004.1431