Resonant Electron Scattering by Atoms
The Kapur-Peierls resonance formalism adapted for electron scattering by atomic systems is modified to allow for the exclusion principle, and a variational principle is derived for calculating the complex resonance energies. The theory is applied to calculate the first four resonance levels in the 1...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences Mathematical and physical sciences, 1963-07, Vol.274 (1357), p.253-266 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Kapur-Peierls resonance formalism adapted for electron scattering by atomic systems is modified to allow for the exclusion principle, and a variational principle is derived for calculating the complex resonance energies. The theory is applied to calculate the first four resonance levels in the 1S state of the electron/atomic hydrogen system by using a trial wave function made up from singleparticle functions which are modified (1s), (2s) and (2p) hydrogen wave functions. We find two levels (at approximately — 13 and — 10 eV) whose widths are of the order of a few volts. There are also two levels (at about — 3 and 0 eV) which have very narrow widths, less than 10-2 eV, if they occur below the inelastic threshold, shooting up to widths of several volts at threshold. Such a narrow level occurs if the resonant state is energetically unable to decay to a state of the residual atom of which it contains a substantial component. |
---|---|
ISSN: | 1364-5021 0080-4630 1471-2946 2053-9169 |
DOI: | 10.1098/rspa.1963.0128 |