Therapeutic antimicrobial peptides may compromise natural immunity

Antimicrobial peptides (AMPs) have been proposed as a promising new class of antimicrobials despite warnings that therapeutic use could drive the evolution of pathogens resistant to our own immunity peptides. Using experimental evolution, we demonstrate that Staphylococcus aureus rapidly evolved res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology letters (2005) 2012-06, Vol.8 (3), p.416-418
Hauptverfasser: Habets, Michelle G. J. L., Brockhurst, Michael A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Antimicrobial peptides (AMPs) have been proposed as a promising new class of antimicrobials despite warnings that therapeutic use could drive the evolution of pathogens resistant to our own immunity peptides. Using experimental evolution, we demonstrate that Staphylococcus aureus rapidly evolved resistance to pexiganan, a drug-candidate for diabetic leg ulcer infections. Evolved resistance was costly in terms of impaired growth rate, but costs-of-resistance were completely ameliorated by compensatory adaptation. Crucially, we show that, in some populations, experimentally evolved resistance to pexiganan provided S. aureus with cross-resistance to human-neutrophil-defensin-1, a key component of the innate immune response to infection. This unintended consequence of therapeutic use could drastically undermine our innate immune system's ability to control and clear microbial infections. Our results therefore highlight grave potential risks of AMP therapies, with implications for their development.
ISSN:1744-9561
1744-957X
DOI:10.1098/rsbl.2011.1203