Changes in expression of the CLOCK gene in obstructive sleep apnea syndrome patients are not reverted by continuous positive airway pressure treatment
Copyright: © 2017 Moreira, Rodrigues, Barros, Pejanovic, Neves-Costa, Pedroso, Pereira, Fernandes, Rodrigues, Barbara and Moita. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is pe...
Gespeichert in:
Veröffentlicht in: | Frontiers in medicine 2017, Vol.4 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Copyright: © 2017 Moreira, Rodrigues, Barros, Pejanovic, Neves-Costa, Pedroso, Pereira, Fernandes, Rodrigues, Barbara and Moita. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Purpose: Metabolic syndrome and cardiovascular disease are strongly associated with obstructive sleep apnea syndrome (OSAS), which causes substantial changes to normal circadian physiological functions, including metabolic pathways. Because core clock genes are known to be modulated by sleep/vigilance cycles, we asked whether the expression level of mRNA coding for clock genes is altered in non-treated OSAS patients and if it can be corrected by standard continuous positive airway pressure (CPAP) treatment. Methods: Peripheral blood was collected from male patients diagnosed with severe OSAS (apnea-hypopnea index ≥ 30/h) before and after treatment initiation. qPCR was used to measure mRNA levels of genes associated with the central circadian pacemaker including CLOCK, BMAL1, Cry1, Cry2, and three Period genes (Per 1, 2, 3) in peripheral blood mononuclear cells (PBMCs). Results: We found statistically significant differences for CLOCK (p-value = 0.022) expression in PBMCs of OSAS patients which were not reverted by treatment with CPAP. We have also found a substantial decrease in the slow wave sleep (SWS) content in OSAS patients (p-value < 0.001) that, contrary to REM sleep, was not corrected by CPAP (p-value = 0.875). Conclusion: CPAP treatment does not correct substantial changes in expression of core clock genes in OSAS patients. Because CPAP treatment is also unable to normalize the SWS in these patients, it is likely that additional therapeutic interventions that increase SWS content and complement the benefits of CPAP are required to more effectively reduce the known increased cardiovascular risk associated with OSAS patients.
LM directs the Innate Immunity and Inflammation Laboratory at IGC, is an FCT Investigator and receives financial support from Fundação para a Ciência e Tecnologia (FCT) and the European Research Council (ERC-2014-CoG 647888-iPROTECTION). The sponsors had no role in the design |
---|---|
ISSN: | 2296-858X |
DOI: | 10.3389/fmed.2017.00187 |